Ta có: \(5^{2005}+5^{2003}=5^{2003}\left(5^2+1\right)=5^{2003}.26=5^{2003}.2.13\) chia hết cho \(13\)
Vậy, \(5^{2005}+5^{2003}\) chia hết cho \(13\)
Ta có: \(5^{2005}+5^{2003}=5^{2003}\left(5^2+1\right)=5^{2003}.26=5^{2003}.2.13\) chia hết cho \(13\)
Vậy, \(5^{2005}+5^{2003}\) chia hết cho \(13\)
Chứng minh: 52005 + 52003 chia hết cho 13
Chứng minh: 52005 + 52003 chia hết cho 13
cmr: 8^2003+5^2003+17^2004-4^2004 chia het cho 13
bài 1: CMR
a,2110-1 chia hết cho 200
b,260+530chia hết cho 4
c,3920+3913 chia hết cho 40
d, 20052007 +20072005 chia hết cho 2006
bài 1: CMR
a,2110-1 chia hết cho 200
b,260+530chia hết cho 4
c,3920+3913 chia hết cho 40
d, 20052007 +20072005 chia hết cho 2006
bài 2: CMR 24n+1 chia hết cho 25 nhưng không chia hết cho 23 với n là số lẻ
júp em với ạ
bài 1: CMR
a,2110-1 chia hết cho 200
b,260+530chia hết cho 4
c,3920+3913 chia hết cho 40
d, 20052007 +20072005 chia hết cho 2006
bài 2: CMR 24n+1 chia hết cho 25 nhưng không chia hết cho 23 với n là số lẻ
júp em với ạ
Chứng minh rằng :
a) (2006^2006 - 2006^2005) chia hết cho 2005
b) (79^m+1 - 79^m) chia hết cho 78
c) ( 25^7 + 5^13)chia hết cho 30
d)( 10^6 - 5^7) chia hết cho 59
e) ( 7^10 - 7^9 - 7^8) chia hết cho 41
f) (81^7 - 27^9 - 9^13) chia hết cho 45
* Mong mọi người giúp nha*
CMR a)3^10+3^11+3^12 chia hết cho 13
b) 5^100+5^101+5^102 chia hết cho 31
CMR:
352005 - 352004 chia hết cho 17
432004 + 432005 chia hết cho 11
273 + 95 chia hết cho 4
273 + 95 chia hết cho 1350
3723 - 1283 chia hết cho 8000