cho a,b,c>0/ a^2+bc=b^2+c^2
cmr 3/(a+b+c)=1/(a+b)+1/(a+c)
cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-c)^2+(c+a-2b)^2cmr a=b=c
Cho a;b;c là các số thực không âm: a+b+c=2
CMR: \(\left(ab\right)^2 +\left(bc\right)^2+\left(ac\right)^2-2abc\le1\)
a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a3 +1/b3 +1/c3 =
3/abc
Cập nhật: a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a^3 +1/b^3 +1/c^3 =
3/abc
cho a,b,c,d tm a^2+b^2+(a+b)^2=c^2+d^2+(c+d)^2
cmr a^4+b^4+(a+b)^4=c^4+d^4+(c+d)^4
a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a2-bc)(1-ac)=a(1-bc)(b2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m \(\frac{1}{^{a^3}^{ }}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
1, a^2+b^2+c^2 >= ab + bc + ca 2, ( a+b+c)*(1/a + 1/b + 1/c) >= 9 3, a/b +b/c + c/a >= 0 a,b,c>0
1, a^2+b^2+c^2 >= ab + bc + ca 2, ( a+b+c)*(1/a + 1/b + 1/c) >= 9 3, a/b +b/c + c/a >= 0 a,b,c>0
\(1,\text{Giả sử }a^2+b^2+c^2\ge ab+bc+ca\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(\text{luôn đúng}\right)\)
Vậy \(a^2+b^2+c^2\ge ab+bc+ca\)
Dấu \("="\Leftrightarrow a=b=c\)
\(2,\forall a,b,c>0\\ \text{Áp dụng BĐT cosi: }\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\dfrac{1}{abc}}=9\sqrt[3]{\dfrac{abc}{abc}}=9\)
Dấu \("="\Leftrightarrow a=b=c\)
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670