Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngô vi hưng
Xem chi tiết
Bách Bách
Xem chi tiết
nguyễn tùng sơn
Xem chi tiết
Lê Trần Nam Khánh
Xem chi tiết
Phạm Ngọc Trà Thanh
Xem chi tiết
Suong Pham
Xem chi tiết
Suong Pham
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 12 2021 lúc 8:49

\(1,\text{Giả sử }a^2+b^2+c^2\ge ab+bc+ca\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(\text{luôn đúng}\right)\)

Vậy \(a^2+b^2+c^2\ge ab+bc+ca\)

Dấu \("="\Leftrightarrow a=b=c\)

\(2,\forall a,b,c>0\\ \text{Áp dụng BĐT cosi: }\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\dfrac{1}{abc}}=9\sqrt[3]{\dfrac{abc}{abc}}=9\)

Dấu \("="\Leftrightarrow a=b=c\)

Trịnh Mai Phương
Xem chi tiết
Trịnh Mai Phương
Xem chi tiết
Trịnh Mai Phương
Xem chi tiết
Thắng Nguyễn
2 tháng 1 2018 lúc 22:06

post ít một thôi