tìm n thuộc Z để cho
4n - 5 ⋮ n
1. 3/n-5 thuộc N<=> n-5 lớn hơn 0<=>n lớn hơn 5
2. 3/n-5 thuộc Z<=> n-5 khác 0<=> n khác 5
3. 9/2n-3 thuộc Z<=> 2n-3 khác 0<=> 2n khác 3<=> n thuộc Z
A= 11/n +5 ( n thuộc Z )
a) điều kiện để A là phân số
b)tìm ps A biết n=2;8
c) tìm n biết A= 1/2
d)tìm n thuộc Z để A thuộc Z
e)tìm n thuộc Z để A rút gọn được
a) Để A là phân số thì \(n+5\ne0\)
hay \(n\ne-5\)
A= n+2 / n-5 ( n thuộc Z, n khác 5) tìm n để A thuộc Z
n+2/n-5=n-5+8/n-5=1+8/n-5
de a thuoc Z thi n-5 thuoc U(8)={+-1;+-2;+-4;+-8}
tu do tim n-5 la cac gia tri tren
roi tu tim n nhe
cho biểu thức a=5/n+2
a. Tìm n để A là phân số
b. Tìm n thuộc z để A thuộc z
c Tìm n thuộc z để a là phân số tối giản
bài này dễ mà
a, Để a là phân số thì
\(n+2\ne0\)\(\Leftrightarrow n\ne-2\)
b, Để \(A\in Z\)\(\Rightarrow5⋮n+2\)
Hay \(n+2\inƯ\left(5\right)\)
Ta có các \(Ư\left(5\right)\in\left\{1;-1;5;-5\right\}\)
Vậy có các trường hợp :
n + 2 = 1 => n = -1
n + 2 = -1 => n = -3
n + 2 = 5 => n = 3
n + 2 = -5 => n = -7
Vậy để \(A\in Z\Rightarrow n\in\left\{-1;-3;3;-7\right\}\)
tìm n thuộc z để 2n+5/n+3 thuộc z
2n+5/n+3 thuộc z khi và chỉ khi 2n+5 chia hết cho n+3
Ta có:2n+5/n+3=2n+6-1/n+3=2(
n+3)-1/n+3=2 + -1/n+3
=>n+3 thuộc ước của -1
=>n+3=-1,1
=>n=-4,-2
Ta có:
\(\dfrac{2n+5}{n+3}=\dfrac{2\left(n+3\right)-1}{n+3}=\dfrac{2-1}{n+3}\)
Để \(\dfrac{2n+5}{n+3}\inℤ\) thì 1 chia hết cho n + 3
\(\Rightarrow\) n + 3 thuộc Ư(1) = {1 ; -1}
Với \(n+3=1\Leftrightarrow n=-2\)
\(n+3=-1\Leftrightarrow n=-4\)
Vậy \(n=-2\) hoặc \(n=-4\)
\(A=\frac{2n-5}{n+3}\) (n THUỘC Z)
a,Tìm n để A là phân số
b,Tìm n thuộc Z để A có giá trị là số nguyên
c,Tìm n thuộc Z để A rút gọn được
d,Tìm n thuộc Z để A là phân số tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
Cho A=n+2 /n-5 (n thuộc Z, n không bằng 5) Tìm n để A thuộc Z
Để A thuộc Z => n+2 chia hết cho n-5
=> n-5+7 chia hết cho n-5
Vì n-5 chia hết cho n-5
=> 7 chia hết cho n-5
=> n-5 thuộc Ư(7)
n-5 | n |
1 | 6 |
-1 | 4 |
7 | 12 |
-7 | -2 |
KL: n\(\in\){6; 4; 12; -2}
Cho biểu thức A= n+5 trên n+3 với n thuộc z
a)tìm n để A bằng 1phần2
b)tìm n thuộc z để A nhận giá trị nguyên
c)tìm n thuộc z để A rút gọn được
e)tìm n để A là phân số tối giản
\(B.\) Để n thuộc z để A nhận giá trị nguyên thì
\(n+5\)\(⋮n+3\)
\(\Rightarrow\)\(\left(n+3\right)+2⋮n+3\)
\(\Rightarrow\)\(n+3\inƯ_{\left(2\right)}\)\(=\left\{\pm1;\pm2\right\}\)
\(n+3=1\Rightarrow x=1-3=-2\)\(\in Z\)\(n+3=-1\Rightarrow x=\left(-1\right)-3=-4\)\(\in Z\)\(n+3=2\Rightarrow x=2-3=-1\in Z\)\(n+3=-2\Rightarrow x=\left(-2\right)-3=-5\in Z\)Vậy x \(\in\){ -2 ; -4 ; -1 ; -5}.
cho A=n+2/n-5 (n thuộc Z ,n khác 5 )
tìm n để A thuộc Z
Để A \(\in\) Z thì n+2 \(⋮\) n-5
=>(n-5)+7 \(⋮\) n-5
=>n-5 \(⋮\) n-5 => 7 \(⋮\) n-5
=>n-5 \(\in\) Ư(7)
hay n-5 \(\in\){1;-1;7;-7}
=>n\(\in\){6;4;12;-2}