Cho ba điểm A B C ở trên đường tròn (O) At là tiếp tuyến của đường tròn tại a đường thẳng d song song với At cắt AB tại M và cắt AC tại N - Chứng minh tgiac ABC và ANM đồng dạng Suy ra AB.AM=AC.AN
Chứng minh tứ giác BMNC nội tiếp
Cho A, B, C là ba điểm trên một đường tròn, At là tiếp tuyến của đường tròn tại A. Đường thẳng song song với At cắt AB tại M và cắt AC tại N. Chứng minh AB.AM = AC.AN.
+ B A t ^ là góc tạo bởi tiếp tuyến at và dây AB B C A ^ là góc nội tiếp chắc cung nhỏ B A ⏜
(hai góc SLT)
Cho A, B, C là ba điểm trên một đường tròn, At là tiếp tuyến của đường tròn tại A. Đường thẳng song song với At cắt AB tại M và cắt AC tại N. Chứng minh AB.AM = AC.AN.
Kiến thức áp dụng
Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau.
Cho A, B, C là ba điểm trên một đường tròn. At là tiếp tuyến của đường tròn tại A. Đường thẳng song song với At cắt AB tại M và cắt AC tại N. Chứng minh rằng AB.AM = AC.AN.
Ta có = (so le trong) (1)
= (2)
( là góc tạo bởi tiếp tuyến và dây cung, chắn cung AB, là góc nội tiếp chắn cung AB)
Từ (1) và (2) suy ra:
= (3)
Xét hai tam giác AMN và ACB. chúng có:
chung
=
Vậy ∆AMN ~ ∆ACB, từ đó = , suy ra AB. AM = AC . AN
Cho tam giác ABC nội tiếp đường tròn tâm O và At là tia tiếp tuyến với đưởng tròn (O). Đường thẳng song song với At cắt AB và AC lần lượt tại M và N. Chứng minh: AB.AM=AC.AN
Cho đường tròn (O; R) đường kính AB và điểm M bất kì thuộc đường tròn (M khác A và B). Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BM ở N. Tiếp tuyến của đường tròn tại M cắt AN ở D.
a.Chứng minh 4 điểm A, D, M, O cùng thuộc một đường tròn
b. Chứng minh OD song song với BM và suy ra D là trung điểm của AN
c. Đường thẳng kẻ qua O và vuông góc với BM cắt tia DM ở E. Chứng minh BE là tiếp tuyến của đường tròn (O; R)
d) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng BM tại I. Gọi giao điểm của AI và BD là J. Khi điểm M di động trên đường tròn (O; R) thì J chạy trên đường nào?
Cho đường tròn (O) đường kính BC và một điểm A nằm trên đường tròng(BA<AC;A khác B và C) Qua O kẻ đường thẳng d song song với AC cắt AB tại D
a) chứng minh BAC=90 độ và D là trung điểm của AB
b)tiếp tuyến tại B của đường tròn cắt đường thẳng d tại E. Chứng minh EA cũng là tiếp tuyến của đường tròng (O)
c) Tia CA cắt tia BE tại F chứng minh E là trung điểm của BF
a: Xét (O) có
ΔBAC nội tiếp
BC là đường kính
Do đó: ΔBAC vuông tại A
=>\(\widehat{BAC}=90^0\)
Xét ΔABC có
O là trung điểm của BC
OD//AC
Do đó: D là trung điểm của AB
b:
Ta có: ΔOAB cân tại O
mà OD là đường trung tuyến
nên OD\(\perp\)AB
=>OE\(\perp\)AB tại D
ΔOAB cân tại O
mà OE là đường cao(OE\(\perp\)AB tại D
nên OE là phân giác của \(\widehat{AOB}\)
=>\(\widehat{AOE}=\widehat{BOE}\)
Xét ΔOBE và ΔOAE có
OB=OA
\(\widehat{BOE}=\widehat{AOE}\)
OE chung
Do đó: ΔOBE=ΔOAE
=>\(\widehat{OBE}=\widehat{OAE}=90^0\)
=>EA là tiếp tuyến của (O)
c:Ta có: OE\(\perp\)AB
AB\(\perp\)AC
Do đó: OE//AC
Xét ΔFBC có
O là trung điểm của BC
OE//FC
Do đó: E là trung điểm của BF
1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau
2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA
3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.
4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!
đường kính AB và điểm M bất kì thuộc đường tròn (M khác A và B). Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BM ở N. Tiếp tuyến của đường tròn tại M cắt AN ở D.
a.Chứng minh 4 điểm A, D, M, O cùng thuộc một đường tròn
b. Chứng minh OD song song với BM và suy ra D là trung điểm của AN
c. Đường thẳng kẻ qua O và vuông góc với BM cắt tia DM ở E. Chứng minh BE là tiếp tuyến của đường tròn (O; R)
d) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng BM tại I. Gọi giao điểm của AI và BD là J. Khi điểm M di động trên đường tròn (O; R) thì J chạy trên đường nào?
Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C (BC<AC). Vẽ đường thẳng qua O song song với BC cắt tiếp tuyến tại A ở M.
a) Chứng minh các tam giác ABC và AMO là các tam giác vuông
b) Chứng minh MC là tiếp tuyến của đường tròn (O)
c) Tiếp tuyến tại B của đường tròn (O) cắt tia AC tại N. Chứng minh \(ON\perp MB\)