cho B= \(\dfrac{x-2}{30}\) x khác 4 ; -4
tìm x để B<0
Cho các đa thức: \(A=x-5x^2+8x-4\)
\(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)
a) Phân tích A, B thành nhân tử
b) CM: B luôn nhận giá trị nguyên khác 17 với mọi giá trị nguyên của x
x đầu ở đa thức A là x^3 chăng?
a/ \(A=x^3-5x^2+8x-4\)
\(=\left(x^3-x^2\right)+\left(-4x^2+4\right)+\left(8x-8\right)\)
\(=x^2\left(x-1\right)-4\left(x-1\right)\left(x+1\right)+8\)
\(=\left(x-1\right)\left(x^2-4x-4\right)=\left(x-1\right)\left(x-2\right)^2\)
b/ \(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)
\(=\dfrac{x^5}{30}-\dfrac{5x^3}{30}+\dfrac{4x}{30}\)
\(=\dfrac{x\left(x^4-5x^2+4\right)}{30}\)
\(=\dfrac{x\left(x^4-x^2-4x^2+4\right)}{30}\)
\(=\dfrac{x\left(x+2\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)}{30}\)
cho A=\( \dfrac{x-2}{2+\sqrt{x}}\)(x>=0), B=\({\dfrac{8x-4}{2x+1}}\)(x>0, x khác \( \dfrac{1}{2}\), x khác \(\dfrac{-1}{2}\))
tìm x để \(\dfrac{A}{B}=1\)
Cho đa thức: \(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\). CM: B luôn nhận giá trị nguyên khác 17 với mọi giá trị nguyên của x
\(B=\dfrac{x^5-5x^3+4x}{30}=\dfrac{x\left(x^4-5x^2+4\right)}{30}=\dfrac{x\left(x^2-1\right)\left(x^2-4\right)}{30}=\dfrac{x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)}{30}=\dfrac{\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)}{30}\).
Xét x nguyên. Trong 5 số x - 2, x - 1, x, x + 1, x + 2 tồn tại 1 số chia hết cho 2, 1 số chia hết cho 3, 1 số chia hết cho 5.
Do đó (x - 2)(x - 1)x(x + 1)(x + 2) luôn nguyên với mọi x nguyên.
Mặt khác tồn tại 2 số trong 5 số x - 2, x - 1, x, x + 1, x + 2 chia hết cho 2 mà 30 chia hết cho 2 nhưng không chia hết cho 4 nên B chia hết cho 2.
Vậy B khác 17 với mọi x nguyên.
cho biểu thức p=\(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{1}{2\sqrt{x}}\right)\)với x>0;x khác 4,x khác 9 .rút gọn p
Ta có: \(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}+\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{1}{2\sqrt{x}}\right)\)
\(=\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)+8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{2\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)}{2\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{8x-8\sqrt{x}+8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}-2-\sqrt{x}+2}\)
\(=\dfrac{16x-8\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{2\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{2\left(16-8\sqrt{x}\right)}{\sqrt{x}+2}\)
\(=\dfrac{32-16\sqrt{x}}{\sqrt{x}+2}\)
Cho biểu thức C=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\dfrac{x-4}{\sqrt{4x}}\) với x>0 và x khác 4
a) Rút gọn C
b) Tìm x để C>3
\(a)C=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\dfrac{x-4}{\sqrt{4x}}\\ =\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}\right)\dfrac{x-4}{2\sqrt{x}}\\ =\left(\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}\right)\dfrac{x-4}{2\sqrt{x}}\\ =\dfrac{2x}{x-4}\cdot\dfrac{x-4}{2\sqrt{x}}\\ =\dfrac{2x\left(x-4\right)}{2\sqrt{x}\left(x-4\right)}\\ =\sqrt{x}\)
b) C>3
\(\Rightarrow\sqrt{x}>3\\ \Leftrightarrow x>9\)
Cho P=(\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)+\(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)).\(\dfrac{x-4}{10\sqrt{x}-2x}\)(với x>0,x khác 4,x khác 25)
a)Rút gọn P
b)Tính P khi x=\(\dfrac{1}{4}\)
c)tìm x để P<-1
\(a.P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{10\sqrt{x}-2x}\left(x>0,x\ne4,x\ne25\right)\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}\right].\dfrac{x-4}{10\sqrt{x}-2x}\)
\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}.\dfrac{x-4}{10\sqrt{x}-2x}\)
\(=\dfrac{2x}{x-4}.\dfrac{x-4}{2\sqrt{x}\left(5-\sqrt{x}\right)}\)
\(=\dfrac{\sqrt{x}}{5-\sqrt{x}}\)
\(b.\) Thay \(x=\dfrac{1}{4}\) vào P, ta được:
\(\dfrac{\sqrt{\dfrac{1}{4}}}{5-\sqrt{\dfrac{1}{4}}}=\dfrac{0,5}{5-0,5}=\dfrac{1}{9}\)
Vậy ......................
\(c.P< -1\)
\(\Leftrightarrow\dfrac{\sqrt{x}}{5-\sqrt{x}}< -1\)
\(\Leftrightarrow\dfrac{\sqrt{x}+5-\sqrt{x}}{5-\sqrt{x}}< 0\)
\(\Leftrightarrow\dfrac{5}{5-\sqrt{x}}< 0\)
\(\Leftrightarrow5-\sqrt{x}< 0\)
\(\Leftrightarrow\sqrt{x}>5\)
\(\Leftrightarrow x>25\left(tm\right)\)
Vậy ...................
A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) và \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}}\) đk : x> 0; x khác 4
Cho P = A.B
Tìm GTNN của P
Ta có: \(P=A\cdot B\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(B=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right);\dfrac{4}{x-4}\) (với x < 0; x khác 0)
\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\cdot\dfrac{x-4}{4}=\dfrac{2\sqrt{x}}{4}=\dfrac{1}{2}\sqrt{x}\)
Với x < 0 ; x ≠ 0 ta có:
\(B=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{4}{x-4}\)
\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\cdot\dfrac{x-4}{4}\)
\(=\dfrac{2\sqrt{x}}{4}=\dfrac{\sqrt{x}}{2}\)
Vậy \(B=\dfrac{\sqrt{x}}{2}\).
B=(\(\dfrac{\sqrt[]{x}}{\sqrt{x}+4}\)+\(\dfrac{4}{\sqrt{x}-4}\)):\(\dfrac{x+16}{\sqrt{x}+2}\) với x>0,x khác 16
a, Rút gọn biểu thức B
b,Tìm B khi x=9
a: \(B=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-4}\cdot\dfrac{\sqrt{x}+2}{x+16}=\dfrac{1}{\sqrt{x}-2}\)
b: Khi x=9 thì B=1/(3-2)=1