Chứng tỏ rằng
1+1/2+1/3+.......+1/21999>1000
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
1. Chứng tỏ rằng:
a. 1/n + 1/n+1 = 1/n + 1/n+1
b. 1/1 . 1/2 +1/2 . 1/3+ 1/3 . 1/4+.......+ 1/998 . 1/999+ 1/999. 1/1000
a, Điều đương nhiên
b,\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{999.1000}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{999}-\frac{1}{1000}\)
= \(1-\frac{1}{1000}\)
= \(\frac{999}{1000}\)
Chứng tỏ rằng 1000^n-1 ; 1000^n+1 với n >1 không thể đồng thời là số nguyên tố
cho biểu thức a=1/2*3/4*5/6...999/1000 chứng tỏ rằng a<1*123
có ai giúp mình để đạt 10 điểm toán 6 ko? T-T
Ta có:
\(\dfrac{1}{2}< 1;\dfrac{3}{4}< 1;\dfrac{5}{6}< 1;...;\dfrac{999}{1000}< 1\)
\(\Rightarrow\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{999}{1000}< 1\)
\(\Rightarrow p< 1\)
câu nay tôi viết sai là p, các nhớ sửa thành a nhé
chứng tỏ rằng: 1/501 + 1/502 + 1/503 + ... + 1/1000 < 1
Ta có: \(\dfrac{1}{501}< \dfrac{1}{500}\)
\(\dfrac{1}{502}< \dfrac{1}{500}\)
\(\dfrac{1}{503}< \dfrac{1}{500}\)
..................
\(\dfrac{1}{1000}< \dfrac{1}{500}\)
\(\Rightarrow\dfrac{1}{501}+\dfrac{1}{502}+\dfrac{1}{503}+...+\dfrac{1}{1000}< \dfrac{1}{500}+\dfrac{1}{500}+\dfrac{1}{500}+...+\dfrac{1}{500}\)
\(\Rightarrow\dfrac{1}{501}+\dfrac{1}{502}+\dfrac{1}{503}+...+\dfrac{1}{1000}< \dfrac{500}{500}=1\)
Vậy \(\dfrac{1}{501}+\dfrac{1}{502}+\dfrac{1}{503}+...+\dfrac{1}{1000}< 1\)
Đặt A = \(\dfrac{1}{501}+\dfrac{1}{502}+\dfrac{1}{503}+...+\dfrac{1}{1000}\)
Ta thấy A có 500 phân số.
Ta có: \(\dfrac{1}{501}< \dfrac{1}{500}\\ \dfrac{1}{502}< \dfrac{1}{500}\)
....................
\(\dfrac{1}{1000}< \dfrac{1}{500}\)
\(\Rightarrow\) A< \(\dfrac{1}{500}+\dfrac{1}{500}+...+\dfrac{1}{500}\)( có 500 phân số \(\dfrac{1}{500}\))
\(\Rightarrow A< 500.\dfrac{1}{500}\\ \Rightarrow A< \dfrac{500}{500}\\ \Rightarrow A< 1\)
Chắc là bạn hiểu chứ ?
Giải:
Trước hết, chúng ta cứ đặt tên cho dãy là A chẳng hạn (cho cách trình bày ngắn hơn ý mà!), rồi chúng ta làm tiếp nhé!!!
Ta có: Số phân số của dãy A là: (1000 - 501) + 1 = 500 (phân số).
Vì \(\dfrac{1}{501}< \dfrac{1}{500}.\)
\(\dfrac{1}{502}< \dfrac{1}{500}.\)
.....................
\(\dfrac{1}{1000}< \dfrac{1}{500}.\)
\(\Rightarrow A< \left(\dfrac{1}{500}+\dfrac{1}{500}+...+\dfrac{1}{500}\right).\)(với 500 số hạng 500).
\(\Rightarrow A< 500.\dfrac{1}{500}.\)
hay \(A< \dfrac{500}{500}=1.\)
Vậy ta thu được ĐPCM.
CHÚC BN HỌC TỐT!!! ^ - ^
Đừng quên bình luận nếu bài mik sai nha!!!
Còn nếu bài mik đúng thì nhớ tick mik để mik lấy SP nha!!!
Chứng tỏ rằng:
a. 1/n + 1/n+1 = 1/n - 1/n+1
b. Tính nhanh:
1/1 + 1/2 +1/2. 1/3 +1/3. 1/4 +.....+ 1/998 . 1/999 + 1/999 . 1/1000
giúp với 2like sẽ đến
Chứng tỏ :
\(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2^{1999}}>1000\)
Chứng tỏ :
\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{1999}}>1000\)
chứng minh rằng: 21999<7714