Hãy chứng tỏ rằng: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{n^2}\)<1
Chứng tỏ
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{100^2}< 1\)
cho M=1+\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2^{100}-1}\). Chứng tỏ M<100
Cho \(A=\dfrac{1}{3^2}+\dfrac{1}{6^2}+\dfrac{1}{9^2}+...+\dfrac{1}{9n^2}.\)
Chứng tỏ rằng
A\(< \dfrac{2}{9}\)
\(B=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+.......+\dfrac{1}{63}\)Chứng tỏ rằng \(\dfrac{B}{3}\)không phải là 1 số nguyên
Chứng tỏ rằng:
\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\)
A=\(\dfrac{1}{2^2}\)+ \(\dfrac{1}{3^2}\)+ \(\dfrac{1}{4^2}\)+ .....+\(\dfrac{1}{2008^2}\). Chứng tỏ rằng: A<1
chứng tỏ rằng
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{7}+......\)+\(\dfrac{1}{6}+\dfrac{1}{17}\)<2
ĐỀ : Tính
\(M=\dfrac{\left(1+\dfrac{2012}{1}\right)\left(1+\dfrac{2012}{1}\right)...\left(1+\dfrac{2012}{1000}\right)}{\left(1+\dfrac{1000}{1}\right)\left(1+\dfrac{1000}{2}\right)...\left(1+\dfrac{1000}{2012}\right)}\)
Mong mọi người giúp đỡ ❤ !