1.
a)(x-1)^2=1
b,(1+x+x^2)(1-x)(1+x)(1-x+x^2)
c,(a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)
d,(-3a^3+a^6+9)(a^3+3)
e,(a^2-1)(a^2-a+1)(a^2+a+1)
e: \(\left(a^2-1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)
\(=\left(a^3-1\right)\left(a^3+1\right)\)
\(=a^6-1\)
b: Ta có: \(\left(1+x+x^2\right)\left(1-x\right)\left(1+x\right)\left(1-x+x^2\right)\)
\(=\left(1-x^3\right)\left(1+x^3\right)\)
\(=1-x^6\)
c: \(\left(a+1\right)\left(a+2\right)\left(a^2+4\right)\left(a-1\right)\left(a^2+1\right)\left(a-2\right)\)
\(=\left(a+1\right)\left(a-1\right)\left(a^2+1\right)\left(a+2\right)\left(a-2\right)\left(a^2+4\right)\)
\(=\left(a^2-1\right)\left(a^2+1\right)\left(a^2-4\right)\left(a^2+4\right)\)
\(=\left(a^4-1\right)\left(a^4-16\right)\)
\(=a^8-17a^4+16\)
d: \(\left(a^3+3\right)\left(a^6-3a^3+9\right)\)
\(=\left(a^3\right)^3+3^3\)
\(=a^9+27\)
Cho x,y>0,x+y=1.CM:`A=(x+1/x)^2+(y+1/y)^2>=25/2`
`A=x^2+1/x^2+2+y^2+1/y^2+2`
`=x^2+y^2+1/x^2+1/y^2+4`
`=(x^2+1/(16x^2))+(y^2+1/(16y^2))+4+15/16(1/x^2+1/y^2)`
Áp dụng BĐt cosi và `1/a^2+1/b^2>=8/(a+b)^2`
`=>A>=1/2+1/2+4+15/16(8/(x+y)^2)`
`<=>A>=5+15/2=25/2`
Dấu "=" `<=>x=y=1/2`
Không làm theo cách sau:
Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)
Dấu "=" \(x=y=\dfrac{1}{2}\)
Chứng minh đẳng thức sau :
a. \(\left[\dfrac{1}{a-1}-\dfrac{2a}{\left(a^2+1\right)\left(a-1\right)}\right]:\dfrac{a^2+a+1}{a^2+1}=\dfrac{a-1}{a^2+a+11}\) VỚI a ≠ 1
b. \(\left(\dfrac{1-x^3}{1-x}-x\right):\dfrac{1+x}{1-x-x^2+x^3}=\left(1-x^2\right)\left(1+x^2\right)\)
Câu a bạn sửa lại đề 11→1
\(a,VT=\dfrac{a^2-2a+1}{\left(a-1\right)\left(a^2+1\right)}\cdot\dfrac{a^2+1}{a^2+a+1}\\ =\dfrac{\left(a-1\right)^2}{\left(a-1\right)\left(a^2+a+1\right)}=\dfrac{a-1}{a^2+a+1}=VP\)
\(b,=\left[\dfrac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}-x\right]\cdot\dfrac{\left(1+x\right)\left(1-x^2\right)}{1+x}\\ =\dfrac{\left(x^2+1\right)\left(1+x\right)\left(1-x^2\right)}{1+x}=\left(x^2+1\right)\left(1-x^2\right)=VP\)
Tìm các số A, B, C để có:
a) (x^2-x+2)/(x-1)^3=[A/(x-1)^3]+[B/(x-1)^2]+C/(x-1)
b) (x^2+2x-1)/(x+1)(x^2+1)=[A/(x-1)]+[(Bx+C)/(x^2+1)]
a)A=\(\dfrac{1}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}\) với a>\(\dfrac{1}{2}\)
b)A=\(\dfrac{\sqrt{x-2\sqrt{x-1}}}{\sqrt{x-1}-1}\)+\(\dfrac{\sqrt{x+2\sqrt{x-1}}}{\sqrt{x-1+1}}\) với x>2
c)\(\dfrac{a+b}{b^2}\)\(\sqrt{\dfrac{a^2b^4}{a^2+2ab+b^2}}\) với a+b>0; b≠0
d)A=\(\left(\sqrt{\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\) với a≥0; a≠1
e)A=\(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)}{\left(x-1\right)^4}}\) với x≠1; y≠1; y>o
f)A=\(\sqrt{\dfrac{m}{1-2x+x^2}}\)\(\sqrt{\dfrac{4m-8mx+4mx^2}{81}}\) với m>0; x≠4
g)A=\(\left(\dfrac{\sqrt{x}+1}{x-4}-\dfrac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right)\)\(\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}}\) với x>0; x≠4
h)\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\)\(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\) với a≥0; a≠1
a: \(A=\dfrac{1}{2a-1}\cdot\sqrt{5a^2}\cdot\left|2a-1\right|\)
\(=\dfrac{2a-1}{2a-1}\cdot a\sqrt{5}=a\sqrt{5}\)(do a>1/2)
b: \(A=\dfrac{\sqrt{x-1-2\sqrt{x-1}+1}}{\sqrt{x-1}-1}+\dfrac{\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x-1}+1}\)
\(=\dfrac{\left|\sqrt{x-1}-1\right|}{\sqrt{x-1}-1}+\dfrac{\sqrt{x-1}+1}{\sqrt{x-1}+1}\)
\(=\dfrac{\sqrt{x-1}-1}{\sqrt{x-1}-1}+1=1+1=2\)
c:
\(=\dfrac{a+b}{b^2}\cdot\dfrac{ab^2}{a+b}=a\)
d: Sửa đề: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(1+\sqrt{a}+a+\sqrt{a}\right)\cdot\left(\dfrac{1}{1+\sqrt{a}}\right)^2\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)
e:
\(A=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}=\dfrac{1}{x-1}\)
f:
\(A=\sqrt{\dfrac{m}{\left(1-x\right)^2}\cdot\dfrac{4m\left(1-2x+x^2\right)}{81}}\)
\(=\sqrt{\dfrac{m}{\left(x-1\right)^2}\cdot\dfrac{4m\left(x-1\right)^2}{81}}\)
\(=\sqrt{\dfrac{4m^2}{81}}=\dfrac{2m}{9}\)
1) (2+a)(2-a)(4+2a+a^2)(a^2-2a+4) 2)(x-2)^3 - x(x+1)(x-1) + 6x(x-3) 3) (x+1)^3 - ( x - 1)(x^2+x+1) -3x (x+1) áp dụng bất đẳng thức đi ạ
1: =(8+a^3)(8-a^3)=64-a^6
2: =x^3-6x^2+12x-8-x(x^2-1)+6x^2-18x
=x^3-6x-8-x^3+x
=-5x-8
3: =x^3+3x^2+3x+1-x^3+1-3x^2-3x
=2
Bài 1 : Rút gọn
b) 1/x-3-1/x+3+2x/9-x2
c) x+1/x-2+4-5x/x3+4x:x-2/x2+44
Bài 2 Cho A=x3-1/(x-1)(x+2) ( với x khác 1; x khác -2)
a) Chứng tỏ biểu thức A=x3-1/(x-1)(x+2)biết x=-3
b) chứng tỏ để A=1
Câu 1:
b: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
\(\dfrac{1}{x-3}-\dfrac{1}{x+3}+\dfrac{2x}{9-x^2}\)
\(=\dfrac{1}{x-3}-\dfrac{1}{x+3}-\dfrac{2x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x+3-x+3-2x}{\left(x-3\right)\left(x+3\right)}=\dfrac{-2x+6}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=-\dfrac{2}{x+3}\)
c: ĐKXĐ: \(x\notin\left\{2;0\right\}\)
Sửa đề: \(\dfrac{x+1}{x-2}+\dfrac{4-5x}{x^3+4x}:\dfrac{x-2}{x^2+4}\)
\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x^2+4\right)}\cdot\dfrac{x^2+4}{x-2}\)
\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x-2\right)}\)
\(=\dfrac{x\left(x+1\right)+4-5x}{x\left(x-2\right)}=\dfrac{x^2+x-5x+4}{x\left(x-2\right)}\)
\(=\dfrac{x^2-4x+4}{x\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}=\dfrac{x-2}{x}\)
Tính
a)A=(1-x)(1+x)(1+x^2)(1+x^2^2)(1+x^2^3)...(1+x^2^2016)
b)B=3(2^2+1)(2^4+1)(2^8+1)(2^16+1)
giải phương trinh:
a)\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}-\frac{1}{x}\)
b)\(\frac{1}{\left(x+a\right)^2-1}+\frac{1}{\left(x+1\right)^2-a^2}=\frac{1}{x^2-\left(a+1\right)^2}+\frac{1}{x^2-\left(a-1\right)^2}\)
a)\(\frac{1}{a+b-x}\)=\(\frac{1}{a}\)+\(\frac{1}{b}\)-\(\frac{1}{x}\)\(\Leftrightarrow\)\(\frac{1}{a+b-x}\)+\(\frac{1}{x}\)=\(\frac{a+b}{ab}\)\(\Leftrightarrow\)\(\frac{x+a+b-x}{x\left(a+b-x\right)}\)=\(\frac{a+b}{ab}\)
\(\Leftrightarrow\)\(\frac{a+b}{xa+xb-x^2}\)=\(\frac{a+b}{ab}\)\(\Leftrightarrow\)\(xa+xb-x^2\)=\(ab\)\(\Leftrightarrow\)\(xa+xb-x^2-ab\)=\(0\)
\(\Leftrightarrow\)\(a\left(x-b\right)-x\left(x-b\right)=0\)\(\Leftrightarrow\)\(\left(x-b\right)\left(a-x\right)=0\)\(\Leftrightarrow\)\(x=b;x=a\)
b) \(\Leftrightarrow\)\(\frac{1}{\left(x+a-1\right)\left(x+a+1\right)}+\frac{1}{\left(x+a+1\right)\left(x-a+1\right)}\)=\(\frac{1}{\left(x-a-1\right)\left(x+a+1\right)}+\frac{1}{\left(x-a+1\right)\left(x+a-1\right)}\)\(\Leftrightarrow\)\(\frac{1}{\left(x+a-1\right)\left(x+a+1\right)}-\frac{1}{\left(x-a-1\right)\left(x+a+1\right)}\)=\(\frac{1}{\left(x-a+1\right)\left(x+a-1\right)}-\frac{1}{\left(x+a+1\right)\left(x-a+1\right)}\)\(\Leftrightarrow\)\(\frac{1}{\left(x+a+1\right)}\left(\frac{1}{x+a-1}-\frac{1}{x-a-1}\right)\)=\(\frac{1}{x-a+1}\left(\frac{1}{x+a-1}-\frac{1}{x+a+1}\right)\)\(\Leftrightarrow\)\(\frac{1}{x+a+1}.\frac{-2a}{\left(x+a-1\right)\left(x-a-1\right)}=\frac{1}{x-a+1}.\frac{2}{\left(x+a-1\right)\left(x+a+1\right)}\)(Quy dong phan so ttrong dau ngoac)
\(\Leftrightarrow\)\(\frac{-2a}{x-a-1}=\frac{2}{x-a+1}\)\(\Leftrightarrow\)\(-2a\left(x-a+1\right)=2\left(x-a-1\right)\)\(\Leftrightarrow\)\(-ax+a^2-a=x-a-1\)\(\Leftrightarrow\)\(-ax-x+a^2-1=0\)\(\Leftrightarrow\)\(\left(a+1\right)\left(-x+a-1\right)=0\)
neu a+1=0 thi phuong trinh co vo so nghiem, neu a+1\(\ne\)0 thi x=a-1
Rút gọn các biểu thức sau:4
a,(x-2)^3-x(x-1)(x+1)+6x(x-3)
b,(2x-3y^2-5)^2-(3y^2-2x+5)^2
c,(a^2-1)(a^2+a+1)(a^2-a+1)
d,(a-2)(a-1)(a-1)(a+2)(a^2+1)(a^2+4)
e,(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
f,1^2-2^2+3^2-4^2+...+2015^2-2016^2