Những câu hỏi liên quan
Trần Lê Quang Huy
Xem chi tiết
Xem chi tiết
Thành Trần Xuân
2 tháng 4 2019 lúc 16:38

Ta chứng minh BĐT \(\frac{â^3+b^3+c^3}{3}\ge\left(\frac{a+b+c}{3}\right)^3\)^3

(do nó rất dài nên mình sẽ bỏ phần này, thông cảm)(Đẳng thức xảy ra khi a=b=c)

Áp dụng ta có \(\frac{a^3+b^3+c^3}{3}\ge\left(\frac{1}{3}\right)^3=\frac{1}{27}\)

\(\Rightarrow a^3+b^3+c^3\ge\frac{1}{9}\)(Đẳng thức xảy ra khi a=b=c và a + b + c =1 => a = b = c = 1/3 )

Mặt khác, ta có \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow1\ge27abc\Rightarrow abc\ge\frac{1}{27}\)=>  \(3abc\ge\frac{1}{9}\)(Đẳng thức xảy ra khi a = b = c = 1/3)

=> \(a^3+b^3+c^3+3abc\ge\frac{2}{9}\)(Đẳng thức khi a = b = c = 1/3)

Mình mới nghĩ được vậy thôi bạn à!

Bình luận (0)
Lê Xuân Lâm
Xem chi tiết
☆MĭηɦღAηɦ❄
10 tháng 8 2020 lúc 16:46

Dễ thấy a,b,c là độ dài của tam giác nên

a + b - c > 0 ; b + c - a > 0 ; c+a-b > 0

Theo Cauchy-Schwarz thì

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra khi a=b=c = 1

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Minh Đăng
10 tháng 8 2020 lúc 16:51

Ta có: Vì chu vi của tam giác là 3 nên a + b + c = 3

Xét: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)

Tương tự CM được:

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\) và \(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{2}{a}\)

Cộng vế 3 BĐT trên lại ta được:

\(2VT\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3^2}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra khi: \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
Phan Nghĩa
10 tháng 8 2020 lúc 16:51

cách khác @@

Theo AM-GM ta có :

\(\frac{1}{a+b-c}+\left(a+b-c\right)\ge2\sqrt{\frac{1}{a+b-c}.\frac{a+b-c}{1}}=2\)

Tương tự \(\frac{1}{b+c-a}+\left(b+c-a\right)\ge2\)

\(\frac{1}{c+a-b}+\left(c+a-b\right)\ge2\)

Cộng theo vế : \(LHS+2\left(a+b+c\right)-a-b-c\ge6\)

\(< =>LHS+3\ge6< =>LHS\ge3\)

Dấu = xảy ra \(< =>a=b=c=1\)

Vậy ta có điều phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa
online online
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 8 2016 lúc 20:02

Áp dụng bđt \(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\)

được : \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{\left(1+1+1\right)^2}{a+b-c+b+c-a+c+a-b}\)

\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

Bình luận (3)
Trần Anh Thơ
Xem chi tiết
Ngo Phuong Thao
Xem chi tiết
Nguyễn Anh Quân
12 tháng 3 2018 lúc 21:14

2.

a, Có : (a+b+c).(1/a+1/b+1/c)

>= \(3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)

   = 9

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

Bình luận (0)
Nguyễn Anh Quân
12 tháng 3 2018 lúc 21:18

2.

b, Xét : 2(a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9 ( theo bđt ở câu a đã c/m )

<=> (a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9/2

<=> a/b+c + b/c+a + c/a+b + 3 >= 9/2

<=> a/b+c + b/c+a + c/a+b >= 9/3 - 3 = 3/2

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

Bình luận (0)
๖Fly༉Donutღღ
12 tháng 3 2018 lúc 21:21

1) Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2 

\(\Rightarrow a+b+c=2\)

Trong một tam giác ta có: 

\(a< b+c\)

\(\Rightarrow a+a< a+b+c\)

\(\Rightarrow2a< 2\Rightarrow a< 1\)

Tương tự ta  cũng có : b < 1 và c < 1 

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Rightarrow\left(1-b-a+ab\right)\left(1-c\right)>0\)

\(\Rightarrow1-c-b+bc-a+ac+ab-abc>0\)

\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca>abc\)

Nên abc < -1 + ab + bc + ca 

\(\Rightarrow2abc< -2+2ab+2bc+2ac\)

\(\Rightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2-2+2ab+2ac+2bc\)

\(\Rightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2-2\)

\(\Rightarrow a^2+b^2++c^2+2abc< 2^2-2\)

\(\Rightarrow a^2+b^2+c^2+2abc< 2\left(đpcm\right)\)

Bình luận (0)
Nguyễn Thị Minh Nguyệt
Xem chi tiết
tth_new
6 tháng 9 2020 lúc 16:34

Bài này không đúng nhé. Với a = b = c = 1 thì bất đẳng thức sai. Tuy nhiên bài này đúng theo chiều ngược lại.

Bình luận (0)
 Khách vãng lai đã xóa
Phan Nghĩa
7 tháng 9 2020 lúc 20:18

Ta sẽ chứng minh bất đẳng thức phụ sau đây \(x^2+y^2+z^2\ge xy+yz+zx\)

\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*

Đặt \(\left\{2a+2b-c;2b+2c-a;2c+2a-b\right\}\rightarrow\left\{x;y;z\right\}\)

Vì a,b,c là ba cạnh của 1 tam giác nên x,y,z dương 

Ta có : \(x^2+y^2+z^2=9\left(a^2+b^2+c^2\right)\)

\(x+y=c+a+4b\)\(y+z=a+b+4c\)\(z+x=b+c+4a\)

Bất đẳng thức cần chứng minh quy về : \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\)

Áp dụng bất đẳng thức AM-GM ta có : 

\(\frac{x^3}{y+z}+\frac{x\left(y+z\right)}{4}\ge2\sqrt{\frac{x^3.x\left(y+z\right)}{\left(y+z\right)4}}=2\sqrt{\frac{x^4}{4}}=2\frac{x^2}{2}=x^2\)

\(\frac{y^3}{x+z}+\frac{y\left(x+z\right)}{4}\ge2\sqrt{\frac{y^3.y\left(x+z\right)}{\left(x+z\right)4}}=2\sqrt{\frac{y^4}{4}}=2\frac{y^2}{2}=y^2\)

\(\frac{z^3}{x+y}+\frac{z\left(x+y\right)}{4}\ge2\sqrt{\frac{z^3.z\left(x+y\right)}{\left(x+y\right)4}}=2\sqrt{\frac{z^4}{4}}=2\frac{z^2}{2}=z^2\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{x\left(y+z\right)}{4}+\frac{y\left(x+z\right)}{4}+\frac{z\left(x+y\right)}{4}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx+xy+yz+zx}{4}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx}{2}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge x^2+y^2+z^2-\frac{xy+yz+zx}{2}\)

Sử dụng bất đẳng thức phụ \(x^2+y^2+z^2\ge xy+yz+zx\)khi đó ta được :

\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{y+x}\ge x^2+y^2+z^2-\frac{x^2+y^2+z^2}{2}\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z< =>a=b=c\)

Vậy ta có điều phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa
๖ۣۜmạnͥh2ͣkͫ5ツ
Xem chi tiết
Thanh Tùng DZ
30 tháng 4 2020 lúc 22:00

Áp dụng BĐT Cô-si dạng Engel,ta có :

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{2}{c}\)

\(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{\left(1+1\right)^2}{c+a-b+a+b-c}=\frac{2}{a}\)

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{2}{b}\)

Cộng lại theo vế rồi chia cho 2, ta có đpcm

Dấu "=" xảy ra khi a = b = c 

Bình luận (0)
 Khách vãng lai đã xóa
Ngô Chi Lan
14 tháng 7 2020 lúc 21:36

Bài làm:

Ta xét: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)(BĐT Cauchy dạng cộng mẫu)

Tương tự ta chứng minh được:

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a}\)và \(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)

Cộng vế 3 bất đẳng thức trên ta được:

\(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)

\(\Leftrightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Dấu "=" xảy ra khi: \(a=b=c\)

Sa

Bình luận (0)
 Khách vãng lai đã xóa
Dra Hawk
Xem chi tiết
Trần Quốc Đạt
18 tháng 12 2016 lúc 10:21

Cauchy ở mẫu \(a^2+bc\ge2a\sqrt{bc}\)

Vậy vế trái \(\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\)

Và lượng trên tử bé hơn bằng \(ab+bc+ca\)

Bình luận (0)
Trần Quốc Đạt
18 tháng 12 2016 lúc 10:22

Mình đánh nhầm, dòng cuối cùng là \(a+b+c\)

Bình luận (0)