Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Phạm Bằng
Xem chi tiết
Trần Thị Loan
22 tháng 5 2015 lúc 21:14

+) Nếu x  đều lớn hơn  1 ; y lớn hơn hoặc = 0; z\(\ge\) 1: 

Nhận xét: 2014x chia hết cho 2;

2013y không chia hết cho 2 

2012z chia hết cho 2

=> 2013y + 2012z không chia hết cho 2

=>   2014x = 2013y + 2012z không xảy ra

+) Nếu x = 1 => 2014 = 2013y + 2012z => chỉ có y = 1; z =0 thoả mãn

+) Nếu x = 0 => 1 = 2013y + 2012z => không có y,z thoả mãn vì  2013y + 2012z nhỏ nhất = 1 + 1 = 2

Vậy chỉ có x = 1; y = 1; z = 0 thoả mãn

giang ho dai ca
22 tháng 5 2015 lúc 20:50

xét y=0 phương trình ko có nghiệm nguyên
xét x= 0 phương trình ko có nghiệm nguyên
xét x;y;z lớn hơn hoặc bằng 1 thì
2012^z chia hết cho 2
2013^y ko chia hết cho 2
=> 2012^z + 2013^y ko chia hết cho 2
mà 2014^x chia hết cho 2
=> vô lý
vậy phương trình có nghiệm (x;y;z)=(0;1;1)

Nguyễn ngọc trân
Xem chi tiết
Nguyễn Vân Huyền
Xem chi tiết
Cao Thị Thùy Dung
Xem chi tiết
Đạt Phạm
Xem chi tiết
Thy Le Vo Khanh
Xem chi tiết
ILoveMath
20 tháng 10 2021 lúc 15:04

\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)

Áp dụng TCDTSBN ta có:

\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)

\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)

\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)

 

Hoàng Nữ Linh Đan
Xem chi tiết
Ngoc Quang Duong
Xem chi tiết
Nguyễn Thị Thương Hoài
22 tháng 12 2022 lúc 11:57

Dùng phương pháp chặn :

\(\le\) y \(\le\) z \(\Rightarrow\) x2 \(\le\) y2 \(\le\) z2 \(\Rightarrow\) x2 + y2 + z2 \(\le\) 3z2 

\(\Rightarrow\) 3z2 \(\ge\) 34 \(\Leftrightarrow\) z2 \(\ge\) 34/3  (1)

x2 + y2 + z2  = 34 mà x,y,z \(\in\) N \(\Rightarrow\) z2 \(\le\) 34 (2)

Kết hợp (1) và (2) ta có : 

34/3  \(\le\) z2 \(\le\)  34 

\(\Rightarrow\) z2 \(\in\) { 16; 25}

vì z \(\in\) N\(\Rightarrow\) z \(\in\) { 4; 5}

th1 Z = 4 ta có :

x2 + y2 + 16 = 34

x2 + y2 = 12 

\(\le\) y \(\Rightarrow\) x2 \(\le\)y2 \(\Rightarrow\) x2 + y2 \(\le\) 2y2 \(\Rightarrow\) 12 \(\le\)2y2 \(\Rightarrow\) y2 \(\ge\) 6 (*)

x2 + y2 = 12 \(\Rightarrow\) y2 \(\le\) 12 (**)

Kết hợp (*) và (**) ta có :

\(\le\) y2 \(\le\) 12 \(\Rightarrow\) y2 = 9 vì y \(\in\) N\(\Rightarrow\) y = 3

với y = 3 ta có : x2 + 32 = 12 \(\Rightarrow\) x2 = 12-9 = 3 \(\Rightarrow\) x = +- \(\sqrt{3}\)(loại vì x \(\in\) N)

th2 : z = 5 ta có :

x2 + y2 + 25 = 34

\(\Rightarrow\) x2 + y2 = 34 - 25  = 9

\(\le\) y \(\Rightarrow\) x2 \(\le\) y2 \(\Rightarrow\) x2 + y2 \(\le\)2y2 \(\Rightarrow\) 2y2 \(\ge\) 9 \(\Rightarrow\) y2 \(\ge\) 9/2 (a)

x2 + y2 = 9 \(\Rightarrow\) y2 \(\le\) 9 (b)

Kết hợp (a) và (b) ta có :

9/2 \(\le\) y2 \(\le\) 9 \(\Rightarrow\) y2 = 9 vì y \(\in\) N \(\Rightarrow\) y = 3

với y = 3 \(\Rightarrow\) x2 + 32 = 9 \(\Rightarrow\) x2 = 0 \(\Rightarrow\) x = 0

kết luận (x; y; z) =( 0; 3; 5) là nghiệm duy nhất thỏa mãn pt 

 

Anime
Xem chi tiết