Giải pt bằng cách sử dụng bất đẳng thức: \(\sqrt{x^2+x-1}+\sqrt{x^2-x+1}=x^2-x+2\)
áp dụng bất đẳng thức giải pt sau
\(6\sqrt[3]{x^3+2x^2+2x+2}=x^2+9x+19\)
Giải PT sau áp dụng bất đẳng thức
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}-3\sqrt{3}x=6\sqrt{3}\)
Sử dụng hằng đẳng thức \(\sqrt{A^2}\)= \(\)IAI để giải pt:
a) \(\sqrt{9-12x+4x^2}\)= 4 + x
b) \(\sqrt{4-4x+x^2}\)= ( x - 1 )2 + x - 6
a) \(\sqrt{9-12x+4x^2}=4+x\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4+x\)
\(\Leftrightarrow\left|3-2x\right|=4+x\)
th1: \(3-2x\ge0\Leftrightarrow2x\le3\Leftrightarrow\Leftrightarrow x\le\dfrac{3}{2}\)
\(\Rightarrow\left|3-2x\right|=4+x\Leftrightarrow3-2x=4+x\Leftrightarrow3x=-1\Leftrightarrow x=\dfrac{-1}{3}\left(tmđk\right)\)
th2: \(3-2x< 0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)
\(\Rightarrow\left|3-2x\right|=4+x\Leftrightarrow2x-3=4+x\Leftrightarrow x=7\left(tmđk\right)\)
vậy \(x=\dfrac{-1}{3};x=7\)
b) \(\sqrt{4-4x+x^2}=\left(x-1\right)^2+x-6\)
\(\Leftrightarrow\sqrt{\left(2-x\right)^2}=x^2-2x+1+x-6\)
\(\Leftrightarrow\left|2-x\right|=x^2-x-5\)
th1: \(2-x\ge0\Leftrightarrow x\le2\)
\(\Rightarrow\left|2-x\right|=x^2-x-5\Leftrightarrow2-x=x^2-x-5\)
\(\Leftrightarrow x^2=7\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{7}\left(loại\right)\\x=-\sqrt{7}\left(tmđk\right)\end{matrix}\right.\)
th2: \(2-x< 0\Leftrightarrow x>2\)
\(\Rightarrow\left|2-x\right|=x^2-x-5\Leftrightarrow x-2=x^2-x-5\)
\(\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(tmđk\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
vậy \(x=-\sqrt{7};x=3\)
a) \(\sqrt{9-12x+4x^2}=4+x\)
\(\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4+x\)
\(\Leftrightarrow\left|3-2x\right|=4+x\)
\(\Leftrightarrow\left[{}\begin{matrix}3-2x=4+x\\3-2x=-4-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=7\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{1}{3};x_2=7\).
b) \(\sqrt{4-4x+x^2}=\left(x-1\right)^2+x-6\)
\(\Leftrightarrow\sqrt{\left(2-x\right)^2}=x^2-2x+1+x-6\)
\(\Leftrightarrow\left|2-x\right|=x^2-x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}2-x=x^2-x-5\\2-x=-x^2+x+5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=7\\x^2=2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\left(l\right)\\x=-\sqrt{7}\\x=3\\x=-1\left(l\right)\end{matrix}\right.\)
Vậy \(x_1=-\sqrt{7};x_2=3\).
\(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)
giải kiểu bất đẳng thức. thank you !
ĐKXĐ:...
\(VT\le\dfrac{\left(x^2+x-1\right)+1}{2}+\dfrac{x-x^2+1+1}{2}=x+1\)
\(=2x-x+1\le x^2+1-x+1=VP\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x^2+x-1=1\\x-x^2+1=1\end{matrix}\right.\Leftrightarrow x=1\)
bất đẳng thức cosy 2 số không âm
áp dụng bất đẳng thức: \(x^2+y^2\ge2\cdot\sqrt{x\cdot y}\)
1) \(\frac{\sqrt{5}}{x+\frac{5}{x}}\le\frac{1}{2}\)
Tìm giá trị lớn nhất của biểu thức \(P=\dfrac{x+3}{\sqrt{x^2+1}}\) với \(x\in\left(0;+\infty\right)\).
Note: Không sử dụng đạo hàm và các bất đẳng thức nâng cao.
\(\left(x+3\right)^2=x^2+6x+9\le x^2+\left(9x^2+1\right)+9=10\left(x^2+1\right)\)
Suy ra: \(P=\dfrac{x+3}{\sqrt{x^2+1}}\le\sqrt{10}\)
Vậy \(MaxP=\sqrt{10}\) (khi \(x=\dfrac{1}{3}\))
Áp dụng bất đẳng thức Bunhiacopxki để giải phương trình:
\(x+2019\sqrt{x-2}=2\sqrt{x-1}\)
Sử dụng hằng đẳng thức \(\sqrt{A^2}\)= \(\)IAI để giải pt:
a) \(\sqrt{9-12x+4x^2}\)= 4 + x
b) \(\sqrt{4-4x+x^2}\)= ( x - 1 )2 + x - 6
Mọi người ơi giúp mị vs gấp lắm !!
a, \(\Leftrightarrow\sqrt{\left(3-2x\right)^2=4+x}\)
\(\Leftrightarrow\left|3-2x\right|=4+x\)
\(\Leftrightarrow\orbr{\begin{cases}3-2x=4+x\\3-2x=-4-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=-1\\x=7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=\sqrt{7}\\x=-\sqrt{7}\end{cases}}\\\left(x-3\right)\left(x-1\right)=0\end{cases}}\)
Sử dụng hằng đẳng thức \(\sqrt{A^2}\)= \(\)IAI để giải pt:
a) \(\sqrt{9-12x+4x^2}\)= 4 + x
b) \(\sqrt{4-4x+x^2}\)= ( x - 1 )2 + x - 6