1, Làm tính nhân : 3xy(x^2-2xy+5)
Phân tích đa thức thành nhân tử : x^2+2xy-25+y^2
1, Làm tính nhân : 3xy(x^2-2xy+5)
Phân tích đa thức thành nhân tử : x^2+2xy-25+y^2\
2.Tìm xy biết a) 4x^2+20x=0
b ) x(x+3)-3x-9=0
Bài 2:
a: =>4x(x+5)=0
=>x=0 hoặc x=-5
b: =>(x+3)(x-3)=0
=>x=-3 hoặc x=3
Phân tích đa thức sau thành nhân tử x^2-25+y^2+2xy
\(x^2-25+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-25\)
\(=\left(x+y\right)^2-5^2\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
\(x^2-25+y^2+2xy=\left(x+2\right)^2-25=\left(x+2-25\right)\left(x+2+25\right)\)
\(=\left(x-23\right)\left(x+27\right)\)
Hok tốt
Ưm mình nhầm
\(x^2-25+y^2+2xy=\left(x+y\right)^2-25=\left(x+y-5\right)\left(x+y+5\right)\)
Hok tốt !
Khi phân tích đa thức x2 + 4x – 2xy – 4y + y2 thành nhân tử, bạn Việt làm như sau:
x2 + 4x – 2xy – 4y + y2 = (x2 - 2xy + y2) + (4x – 4y)
= (x - y)2 + 4(x – y)
= (x – y)(x – y + 4).
Em hãy chỉ rõ trong cách làm trên, bạn Việt đã sử dụng những phương pháp nào để phân tích đa thức thành nhân tử.
x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử
= (x - y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung
= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung
Bài 1: Phân tích đa thức sau thànBài 1: Phân tích đa thức sau thành nhân tử a) x 2 – xy + x – y b) x 2 + 5x + 6 c) 2xy - x 2 - y 2 +16h nhân tử a) x 2 – xy + x – y b) x 2 + 5x + 6 c) 2xy - x 2 - y 2 +16
a) \(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
b) \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+3\right)\left(x+2\right)\)
\(2xy-x^2-y^2+16\)
\(=16-\left(x-y\right)^2\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)
Bài 1 : Phân tích các đa thức sau thành nhân tử :
a) \(2x-2y-x^2+2xy-y^2\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
c) \(x^3-xy^2+x^2y-y^2z\)
a) \(=2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
\(=2\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(2-x+y\right)\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+y^3\right)+\left(3x^2+3xy^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+3xy-1\right)\)
\(=\left(x+y\right)\left(x^2+y^2+2xy-1\right)\)
Phân tích đa thức \(x^2\) + 2xy + \(y^2\)- 25 thành nhân tử. Kết quả là:
A. (x + y - 5)(x – y + 5). B. (x + y - 5)(x + y + 5).
C. (x + y - 25)(x – y + 25). D. (x + y - 25)(x + y + 25).
Phân tích đa thức 3\(x^2\)y + 6\(xy^2\) – 9xy thành nhân tử. Kết quả là:
A. 3(\(x^2y\) + 2\(xy^2\) – 3xy - 3). B. 3y(\(x^2\) + 2xy – 3x). C. xy(3x + 6y - 9). D. 3xy(x + 2y – 3).
1.Phân tích đa thức thành nhân tử
a) 2x^2-4x+2xy-4y
b) 2xy+2xyz-4(x+z)
c) 3x^2-3xy-3x-3y
2x(x-2)+2y(x-2)= (x-2)(2x+2y)=2(x-2)(x+y)
b,2(xy+xyz-2x-2z)
c, 3(x^2-xy-x-y)
a) Ta có : 2x2 - 4x + 2xy - 4y
= 2x(x - 2) + 2y(x - 2)
= (x - 2)(2x + 2y)
= 2(x - 2)(x + y)
phân tích đa thức thành nhân tử
11) 3y^2-3z^2+3x^2+6xy
12) 16x^3+54y^3
13) x^2-25-2xy+y^2
1: =3(y^2+x^2+2xy-z^2)
=3(x+y-z)(x+y+z)
2: =2(8x^3+27y^3)
=2(2x+3y)(4x^2-6xy+9y^2)
3: =(x-y)^2-25
=(x-y-5)(x-y+5)