a) Tìm số nguyên n sao cho n2+5n+9 là bội của n+3
b) Chứng minh rằng bình phương của một số nguyên khác 2 và 3 khi chia cho 12 đều dư 1
Tìm các số nguyên n sao cho n^2 + 5n + 9 là bội của n+3
Chứng minh rầng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1
Tìm x,y nguyên sao cho xy + 2x + y +11 =0\
Chứng minh rằng 3^2 + 3^3 + 3^4 +...................+3^101 chia hết cho 120
Cho 2 số avaf b thỏa mãn a - b=2(a + b)=a/b Chứng minh a=-3b;Tính a/b : Tìm A và B
a) Tìm hai số tự nhiên a,b biết BCNN(a,b) + ƯCLN(a,b) = 15
b) Tìm x nguyên thỏa mãn \(\left|x+1\right|+\left|x-2\right|+\left|x+7\right|=5x-10\)
c) Chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1
d) Tìm số nguyên n sao cho \(n^2+5n+9\) là bội của n+3
Bạn nào giúp được câu nào thì giúp mk nha
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}
`b)` - Ta thấy : `|x+1|+|x-2|+|x+7|>=0`
`-> 5x-10>=0`
`-> 5x>=10`
`-> x>=2`
`-> |x+1|=x+1;|x-2|=x-2;|x+7|=x+7`
- Vậy ta có :
`(x+1)+(x-2)+(x+7)=5x-10`
`<=> x+1+x-2+x+7=5x-10`
`<=> 3x+6=5x-10`
`<=> 3x-5x=-10-6`
`<=> -2x=-16`
`<=> x=8`
Chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1.
vào 1 trong 2 link này :
https://olm.vn/hoi-dap/question/366868.html
https://olm.vn/hoi-dap/question/402423.html
Chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1
vì tất cả các số nguyên tố khác 2 đều là số lẻ mà số lẻ nhân số lẻ bằng số lẻ nên chúng chia cho 2 dư 1
Chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1.
chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1
cho1 tick rồi mình giải chi tiết cho, ha
Chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1
Bài 1:Tìm 2 số tự nhiên a và b biết tổng UCLN và BCNN của chúng là 15
Bài 2;Tìm x biết: 1) \(-\frac{2}{3}\left(x-\frac{1}{4}\right)=\frac{1}{3}\left(2x-1\right)\)
2)\(\frac{1}{5}.2^x+\frac{1}{3}.2^{x+1}=\frac{1}{5}.2^7+\frac{1}{3}.2^8\)
Bài 3:Tìm các số nguyên n sao cho: \(^{n^2+5n+9}\)là bội của n+3
Bài 4:Chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1
Bài 5:Tìm x nguyên thỏa mãn:|x+1|+|x-2|+|x+7|=5x-10
Bài 6;Tìm 3 số có tổng bằng 210, biết rằng 6/7 ST1 bằng 9/11 ST2 và 9/11 ST2 bằng 2/3 ST3
Bài 7: Tìm 2 số biết tỉ số của chứng bằng 5:8 và tích của chứng bằng 360
Mình đang cần gấp.Các bạn giúp nha
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
Chứng minh rằng bình phương của 1 số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1