cho a,b,c>0. tim giá trị nhỏ nhất cua : B=(a+b+c)(1/a+1/b+1/c)
Các số a, b, c thỏa mãn điều kiện :
a + b + c = 1
0 nhỏ hơn hoặc bằng a nhỏ hơn hoặc bằng b nhỏ hơn hoặc bằng c
a) c có thể là 2/5 không ?
b) c có thể là 1/5 không ?
c) Tìm giá trị nhỏ nhất của c ?
d) Tìm giá trị lớn nhất cua c ?
Bài 1 (2,0 điểm) Cho ,A= sqrt x -2 sqrt x+1 ,B- x x-4 + 1 sqrt x-2 + 1 sqrt x+2 ,DK:x>=0,x ne4 a) Tính giá trị của A hix = 25 b) Rút gon B: c) Tim giá trị nhỏ nhất của biểu thức: P= Lambda.B
a: \(A=\sqrt{x-2\sqrt{x}+1}=\left|\sqrt{x}-1\right|\)
Khi x=25 thì A=|5-1|=4
b: \(B=\dfrac{-x+\sqrt{x}+2+\sqrt{x}-2}{x-4}=\dfrac{-x+2\sqrt{x}}{x-4}=\dfrac{-\sqrt{x}}{\sqrt{x}+2}\)
1. tim x biết
a, -12(x-5)+7(3-x)=5
b,(x-3)+(x-2)+...+10+11=11
2atim giá trị nhỏ nhất của biểu thức:7-(x-3)^2
b tim giá trị nhỏ nhất cua biểu thức:15+/x-3/
c tim giá trị lớn nhất của biểu thức:21-/x+5/
d tim giá trị lớn nhất của biểu thức:18-(x+3)^2
3a chứng minh n(3n+1)là số chắn
b chứng minh a(a+1)(a-1)chia hết cho 6
1. a, => -12x+60+21-7x = 5
=> 81 - 19x = 5
=> 19x = 81 - 5 = 76
=> x = 76 : 19 = 4
Tk mk nha
Cho 3 số a, b, c thỏa mãn 0 ≤ a ≤ b+1 ≤ c+1 Và a+b+c= 1 Tính giá trị nhỏ nhất của c
Cho a,b,c>=0; (a+b+c)=3. tìm giá trị nhỏ nhất của biểu thức B=1/(1+a)+1/(1+b)+1/(1+c)
Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x;y;z\ge0\) ta được :
\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{9}{3+\left(a+b+c\right)}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra <=> \(a=b=c=1\)
Vậy GTNN của B là \(\frac{3}{2}\) tại \(a=b=c=1\)
Cho a,b,c>=0; (a+b+c)<=3. tìm giá trị nhỏ nhất của biểu thức B=1/(1+a)+1/(1+b)+1/(1+c)
dùng bđt 1/x+1/y+1/z >/ 9/(x+y+z) với x,y,z>0
Cho a,b,c>0 thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của
P= 1/abc + 1/(a^2+b^2+c^2)
\(P=\dfrac{1}{abc}+\dfrac{1}{a^2+b^2+c^2}=\dfrac{a+b+c}{abc}+\dfrac{1}{a^2+b^2+c^2}\)
\(=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{a^2+b^2+c^2}\left(1\right)\)
\(\)\(\left\{{}\begin{matrix}a+b+c=1\\\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{9}{ab+bc+ac}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow P\ge\dfrac{9}{ab+bc+ac}+\dfrac{1}{a^2+b^2+c^2}\)
\(=\dfrac{1}{2\left(ab+bc+ac\right)}+\dfrac{1}{a^2+b^2+c^2}+\dfrac{17}{2\left(ab+bc+ac\right)}\)
\(\Rightarrow P\ge\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{17}{2\left(ab+bc+ac\right)}\)
\(\Rightarrow P\ge9+\dfrac{17}{2\left(ab+bc+ac\right)}\)
mà \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\)
\(\Rightarrow P\ge9+\dfrac{17}{2.\dfrac{1}{3}}=9+\dfrac{17.3}{2}=\dfrac{18+17.3}{2}=\dfrac{69}{2}\)
\(\Rightarrow Min\left(P\right)=\dfrac{69}{2}\)
Cho a,b,c>0 và a+b+c=3. Tìm giá trị nhỏ nhất của P=\(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\)
\(\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab^2}{2b}=a-\dfrac{1}{2}ab\)
Tương tự: \(\dfrac{b}{1+c^2}\ge b-\dfrac{1}{2}bc\) ; \(\dfrac{c}{1+a^2}\ge c-\dfrac{1}{2}ca\)
Cộng vế:
\(P\ge a+b+c-\dfrac{1}{2}\left(ab+bc+ca\right)\ge a+b+c-\dfrac{1}{6}\left(a+b+c\right)^2=\dfrac{3}{2}\)
\(P_{min}=\dfrac{3}{2}\) khi \(a=b=c=1\)
cho a, b, c>0 và a+b+c=1. Tìm giá trị nhỏ nhất của P=1/2a-a² + 1/2b-b² + 1/2c-c²
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P=\frac{1}{2a-a^2}+\frac{1}{2b-b^2}+\frac{1}{2c-c^2}\)
\(\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)-\left(a^2+b^2+c^2\right)}\)
\(=\frac{9}{2-\left(a^2+b^2+c^2\right)}\ge\frac{9}{2-\frac{\left(a+b+c\right)^2}{3}}\)
\(=\frac{9}{2-\frac{1}{3}}=\frac{9}{\frac{5}{3}}=\frac{27}{5}\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
@Thắng Nguyễn
Nếu đề là min của \(\text{ }\frac{1}{2x}-x^2+\frac{1}{2y}-y^2+\frac{1}{2z}-z^2\) thì liệu giải đ.c không nhỉ?
chắc k đâu vì đề là a,b,c mà you sửa là x,y,z sao làm :v