Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hải Anh
Xem chi tiết
Anh Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 16:41

a: \(A=\sqrt{x-2\sqrt{x}+1}=\left|\sqrt{x}-1\right|\)

Khi x=25 thì A=|5-1|=4

b: \(B=\dfrac{-x+\sqrt{x}+2+\sqrt{x}-2}{x-4}=\dfrac{-x+2\sqrt{x}}{x-4}=\dfrac{-\sqrt{x}}{\sqrt{x}+2}\)

tran dang khoa
Xem chi tiết
Nguyễn Anh Quân
21 tháng 2 2018 lúc 20:51

1. a, => -12x+60+21-7x = 5

=> 81 - 19x = 5

=> 19x = 81 - 5 = 76

=> x = 76 : 19 = 4

Tk mk nha

dream XD
Xem chi tiết
Trần Đăng Tuấn
Xem chi tiết
Đinh Đức Hùng
27 tháng 4 2017 lúc 14:40

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x;y;z\ge0\) ta được :

\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{9}{3+\left(a+b+c\right)}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra <=> \(a=b=c=1\)

Vậy GTNN của B là \(\frac{3}{2}\) tại \(a=b=c=1\)

Trần Đăng Tuấn
Xem chi tiết
Hoàng Phúc
26 tháng 4 2017 lúc 20:04

dùng bđt 1/x+1/y+1/z >/ 9/(x+y+z) với x,y,z>0 

trang
Xem chi tiết
Nguyễn Đức Trí
20 tháng 7 2023 lúc 9:36

\(P=\dfrac{1}{abc}+\dfrac{1}{a^2+b^2+c^2}=\dfrac{a+b+c}{abc}+\dfrac{1}{a^2+b^2+c^2}\)

\(=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{a^2+b^2+c^2}\left(1\right)\)

\(\)\(\left\{{}\begin{matrix}a+b+c=1\\\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{9}{ab+bc+ac}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow P\ge\dfrac{9}{ab+bc+ac}+\dfrac{1}{a^2+b^2+c^2}\)

\(=\dfrac{1}{2\left(ab+bc+ac\right)}+\dfrac{1}{a^2+b^2+c^2}+\dfrac{17}{2\left(ab+bc+ac\right)}\)

\(\Rightarrow P\ge\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{17}{2\left(ab+bc+ac\right)}\)

\(\Rightarrow P\ge9+\dfrac{17}{2\left(ab+bc+ac\right)}\)

mà \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\)

\(\Rightarrow P\ge9+\dfrac{17}{2.\dfrac{1}{3}}=9+\dfrac{17.3}{2}=\dfrac{18+17.3}{2}=\dfrac{69}{2}\)

\(\Rightarrow Min\left(P\right)=\dfrac{69}{2}\)

Lê Huy Hoàng
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 3 2022 lúc 1:15

\(\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab^2}{2b}=a-\dfrac{1}{2}ab\)

Tương tự: \(\dfrac{b}{1+c^2}\ge b-\dfrac{1}{2}bc\) ; \(\dfrac{c}{1+a^2}\ge c-\dfrac{1}{2}ca\)

Cộng vế:

\(P\ge a+b+c-\dfrac{1}{2}\left(ab+bc+ca\right)\ge a+b+c-\dfrac{1}{6}\left(a+b+c\right)^2=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(a=b=c=1\)

nguyễn minh quý
Xem chi tiết
Thắng Nguyễn
3 tháng 7 2017 lúc 18:48

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(P=\frac{1}{2a-a^2}+\frac{1}{2b-b^2}+\frac{1}{2c-c^2}\)

\(\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)-\left(a^2+b^2+c^2\right)}\)

\(=\frac{9}{2-\left(a^2+b^2+c^2\right)}\ge\frac{9}{2-\frac{\left(a+b+c\right)^2}{3}}\)

\(=\frac{9}{2-\frac{1}{3}}=\frac{9}{\frac{5}{3}}=\frac{27}{5}\)

Xảy ra khi \(a=b=c=\frac{1}{3}\)

Rau
3 tháng 7 2017 lúc 18:57

@Thắng Nguyễn
Nếu đề là min của \(\text{ }\frac{1}{2x}-x^2+\frac{1}{2y}-y^2+\frac{1}{2z}-z^2\) thì liệu giải đ.c không nhỉ? 
 

Thắng Nguyễn
3 tháng 7 2017 lúc 20:47

chắc k đâu vì đề là a,b,c mà you sửa là x,y,z sao làm :v