Với a,b là các số nguyên dương sao cho a+1 và b+2007 chia hết cho 6. Cmr: 4a+a+b chia hết cho 6
Tìm số nhỏ nhất trong các số nguyên dương là bội của 2007 và có 4 CS cuối là 2008 (1)
Xét a , b là các số nguyên dương sao cho a + 1 và b + 2007 chia hết cho 6 . CMR : ( 4n + a + b ) chia hết cho 6 (2)
với a;b là các số nguyen dương sao cho a+1 và b+2007 chia hết cho 6
.CMR: 4a+a+b chia hết cho 6
với a và b thuộc nguyên dương sao cho a+1 và b+2007 chia hết cho 6. cmr: (4^a)+a+6 chia hết cho 6
ừ đúng đó bạn, nhưng cộng 6 chứ k phải k phải cộng b nha
a nhầm đề , cộng b chứ k phải cộng 6
Với a;b nguyên dương sao cho a+1 và b+2007 chia hết cho 6
CMR: 4a+a+b chia hết cho 6
Do a + 1 và b + 2007 chia hết cho 6. Do đó : a, b lẻ. Thật vậy, nếu a, b chẵn
⇒a+1,b+2007 ⋮/ 2
⇒a+1,b+2007 ⋮/ 6.
Điều nói trên là trái với giả thiết.
Vậy a, b luôn lẻ.
Do đó : 4a+a+b ⋮ 2.
Ta có : a+1,b+2007 ⋮ 6.
⇒a+1+b+2007 ⋮ 6
⇒(a+b+1)+2007 ⋮ 3.
⇒a+b+1 ⋮ 3.
Ta thấy 4a+a+b=(4a−1)+(a+b+1)
Lại có : 4a−1 ⋮ (4−1)=3 (*)
suy ra : 4a+a+b ⋮ 3
mà \(\left(2,3\right)=1\RightarrowĐPCM\)
b+2007 chia hết cho 6 nên b+3 chia hết cho 6
4a+a+b=4a-4+a+1+b+3
mà 4a đồng dư với 4 (mod 6) nên 4a-4 chia hết cho 6
mặt khác a+1 và b+3 chia hết cho 6 nên 4a+a+b chia hết cho 6
Tớ nghĩ khác các bạn:
a+1chia hết cho 6
b+2007chia hết cho 6
Suy ra :a+1+b+2007 chia hết cho 6
a+b+2008 chia hết cho 6
4^a khác 2008
4^a+a+b không chia hết cho 6
Với a,b là các số nguyên dương sao cho a+ 1 và b+ 2007 chia hết cho 6
Chứng minh rằng: 4a+ a+ b chia hết cho 6
Ta có a+1\(⋮\)6 và b+2007\(⋮\)6 nên a+1\(⋮\)2 va b+2007\(⋮\)2 \(\Rightarrow\)a+b+2008\(⋮\)2\(\Rightarrow\)a+b\(⋮\)2\(\Rightarrow\)4\(^a\)+a+b\(⋮\)2 (1)
Từ a+1\(⋮\)6 và b+2007\(⋮\)6 ta cung suy ra a+b+1+2007\(⋮\)3\(\Rightarrow\)a+b+1\(⋮\)3 (vì 2007\(⋮\)3)
lại có 4\(^a\)-1\(⋮\)(4-1)=3 \(\Rightarrow\)a+b+1+4\(^a\)-1\(⋮\)3 hay 4\(^a\)+a+b\(⋮\)3(2)
từ (1) và (2) suy ra 4\(^a\)+a+b\(⋮\)6 (vì (2;3)=1)
Với a,b là các số nguyên dương sao cho a + 1 và b + 2007 chia hết cho 6 Chứng minh rằng 4 mũ a + a + b chia hết cho 6
Giải hộ nha đang gấp
Vì a,b là các số nguyên dương nên:
\(4^a\equiv1\left(mod3\right)\)
\(\Rightarrow4^a+2\equiv0\left(mod3\right)\)
Mà \(4^a+2\equiv0\left(mod2\right)\)
\(\Rightarrow4^a+2\equiv0\left(mod6\right)\) vì \(\left(2;3\right)=1\)
Ta có:\(4^a+a+b=\left(4^a+2\right)+\left(a+1\right)+\left(b+2007\right)-2010⋮6\)
Vậy \(4^a+a+b⋮6\)
lm lại (đầy đủ hơn) haizz
\(4\equiv1\left(\text{mod 3}\right)\Rightarrow4^a\equiv1^a\left(\text{mod 3}\right)\Rightarrow4^a\equiv1\left(\text{mod 3}\right)\)
\(4^a+a+b=4^a+a+1+b+2006-2007\)
vì a+1 và a+2007 chia hết cho 6=>a+b+2008 chia hết cho 3=>a+b+2007 chia 3 dư 2=>4^a+a+b chia hết cho 3 và 2007 chia hết cho 3=>4^a+a+b chia hết cho 3
a+1 và b+2007 chia hết cho 6=>a+1 chia hết cho 2=>a lẻ và b lẻ
4^a+a+b chẵn=>4^a+a+b chia hết cho 2=> 4^a+a+b chia hết cho 2.3 hay chia hết cho 6
Vậy: 4^a+a+b chia hết cho 6 (đpcm)
a) tìm số dư khi chia 2^2011 cho 31
b) với a,b là các số nguyên dương sao cho a+1 và b+2007 chia hết cho 6. Chứng minh rằng : 4^a+a+b chia hết cho 6
b, a+1 và b+2007 chia hết cho 6
=> a+1 và b+2007 đều chẵn
=> a và b đều lẻ
=> a+b chẵn
Mà a là số nguyên dương nên 4^a chẵn
=> 4^a+a+b chẵn
=> 4^a+a+b chia hết cho 2 (1)
Lại có : a+1 và b+2007 chia hết cho 3
=> a chia 3 dư 2 và b chia hết cho 3
=> a+b chia 3 dư 2
Mặt khác : 4^a = (3+1)^a = B(3)+1 chia 3 dư 1
=> 4^a+a+b chia hết cho 3 (2)
Từ (1) và (2) => 4^a+a+b chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
Tk mk nha
Vì chưa thấy ai giải câu a nên thầy sẽ giải hộ nhé
Ta có \(32\equiv1\left(mod31\right)\Rightarrow32^{402}\equiv1^{402}=1\left(mod31\right)\)(Theo thuyết đồng dư)
nên \(32^{402}=2^{2010} \)chia 31 dư 1 suy ra \(2^{2011}\)chia 31 dư 2
Phần còn lại em tự làm nhé
Với a và b là các số nguyên dương sao cho a+1 và b+2019 là cá số chia hết cho 6 . CMR số \(4^a+a+b\)chia hết cho 6
Ta có: \(b+2019=\left(b+3\right)+2016\)(*)
Mà \(2016⋮6\)kết hợp với \(\left(^∗\right)⋮6\Rightarrow b+3⋮6\)
Lại có: a + 1 chia hết cho 6 nên \(\left(a+1\right)+\left(b+3\right)⋮6\)
\(\Rightarrow a+b+4⋮6\)
\(\Rightarrow a+b+4^a+\left(4-4^a\right)⋮6\)(1)
Xét a + 1 chia hết cho 6 nên a chia 6 dư 5.Đặt a = 6k + 5
\(\Rightarrow4-4^a=4-4^{6k+5}=4\left(1-4^{6k+4}\right)\)
Ta có:\(4\left(1-4^{6k+4}\right)⋮2\)
Mặt khác: \(1\text{≡}4\left(mod3\right)\)và \(4^{6k+4}\text{≡}4\left(mod3\right)\)
\(\Rightarrow\left(1-4^{6k+4}\right)⋮3\)
Lúc đó \(4\left(1-4^{6k+4}\right)⋮6\)(vì (2,3)=1) (2)
Từ (1) và (2) suy ra \(a+b+4^a⋮6\left(đpcm\right)\)
Với a,b là số nguyên dương sao cho a+1 và b+2007 chia hết cho 6. Chứng minh rằng \(4^a+a+b\) chia hết cho 6.
Câu hỏi của Trần Anh - Toán lớp 8 - Học toán với OnlineMath
Tham khảo!