Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mạnh Khôi
Xem chi tiết
Cô Nàng Lạnh Lùng
Xem chi tiết
Huỳnh Nguyễn Nhật Minh
Xem chi tiết
Triệu Việt Hưng
16 tháng 4 2016 lúc 11:00

4 mu a+a + b đúng không bạn?

Huỳnh Nguyễn Nhật Minh
16 tháng 4 2016 lúc 11:03

ừ đúng đó bạn, nhưng cộng 6 chứ k phải k phải cộng b nha

Huỳnh Nguyễn Nhật Minh
16 tháng 4 2016 lúc 11:06

a nhầm đề , cộng b chứ k phải cộng 6

 

Nguyễn Nhật Minh
Xem chi tiết
Nguyễn Văn Tiến
14 tháng 12 2015 lúc 6:52

Do a + 1 và b + 2007 chia hết cho 6. Do đó : a, b lẻ. Thật vậy, nếu a, b chẵn 
⇒a+1,b+2007 ⋮/ 2
⇒a+1,b+2007 ⋮/ 6.
Điều nói trên là trái với giả thiết.
Vậy a, b luôn lẻ.
Do đó : 4a+a+b ⋮ 2.
Ta có : a+1,b+2007 ⋮ 6.
⇒a+1+b+2007 ⋮ 6
⇒(a+b+1)+2007 ⋮ 3.
⇒a+b+1 ⋮ 3.  
Ta thấy 4a+a+b=(4a−1)+(a+b+1)
Lại có : 4a−1 ⋮ (4−1)=3 (*)

suy ra : 4a+a+b ⋮ 3

mà \(\left(2,3\right)=1\RightarrowĐPCM\)

NGUUYỄN NGỌC MINH
14 tháng 12 2015 lúc 13:09

b+2007 chia hết cho 6 nên b+3 chia hết cho 6

4a+a+b=4a-4+a+1+b+3

mà 4a đồng dư với 4 (mod 6) nên 4a-4 chia hết cho 6

mặt khác a+1 và b+3 chia hết cho 6 nên 4a+a+b chia hết cho 6

Lê Minh Ngọc
29 tháng 12 2017 lúc 22:24

Tớ nghĩ khác các bạn:

a+1chia hết cho 6

b+2007chia hết cho 6

Suy ra :a+1+b+2007 chia hết cho 6

a+b+2008 chia hết cho 6

4^a khác 2008

4^a+a+b không chia hết cho 6

Cậu bé đz
Xem chi tiết
tran an shirra
5 tháng 4 2018 lúc 22:10

4a+a+b chia hết cho6 :((((

Cậu bé đz
5 tháng 4 2018 lúc 22:11

bn nói thế ai chẳng nói đc

vũ thị hiền
7 tháng 4 2018 lúc 16:33

Ta có a+1\(⋮\)6 và b+2007\(⋮\)6 nên a+1\(⋮\)2 va b+2007\(⋮\)\(\Rightarrow\)a+b+2008\(⋮\)2\(\Rightarrow\)a+b\(⋮\)2\(\Rightarrow\)4\(^a\)+a+b\(⋮\)2 (1)

Từ a+1\(⋮\)6 và b+2007\(⋮\)6 ta cung suy ra a+b+1+2007\(⋮\)3\(\Rightarrow\)a+b+1\(⋮\)3 (vì 2007\(⋮\)3)

lại có 4\(^a\)-1\(⋮\)(4-1)=3 \(\Rightarrow\)a+b+1+4\(^a\)-1\(⋮\)3  hay 4\(^a\)+a+b\(⋮\)3(2)

từ (1) và (2) suy ra 4\(^a\)+a+b\(⋮\)6 (vì (2;3)=1)

Lê Hữu Thành
Xem chi tiết
zZz Cool Kid_new zZz
15 tháng 2 2019 lúc 22:18

Vì a,b là các số nguyên dương nên:

\(4^a\equiv1\left(mod3\right)\)

\(\Rightarrow4^a+2\equiv0\left(mod3\right)\)

Mà \(4^a+2\equiv0\left(mod2\right)\)

\(\Rightarrow4^a+2\equiv0\left(mod6\right)\) vì \(\left(2;3\right)=1\)

Ta có:\(4^a+a+b=\left(4^a+2\right)+\left(a+1\right)+\left(b+2007\right)-2010⋮6\)

Vậy \(4^a+a+b⋮6\)

shitbo
16 tháng 2 2019 lúc 15:25

lm lại (đầy đủ hơn) haizz

\(4\equiv1\left(\text{mod 3}\right)\Rightarrow4^a\equiv1^a\left(\text{mod 3}\right)\Rightarrow4^a\equiv1\left(\text{mod 3}\right)\)

\(4^a+a+b=4^a+a+1+b+2006-2007\)

vì a+1 và a+2007 chia hết cho 6=>a+b+2008 chia hết cho 3=>a+b+2007 chia 3 dư 2=>4^a+a+b chia hết cho 3 và 2007 chia hết cho 3=>4^a+a+b chia hết cho 3

a+1 và b+2007 chia hết cho 6=>a+1 chia hết cho 2=>a lẻ và  b lẻ

4^a+a+b chẵn=>4^a+a+b chia hết cho 2=> 4^a+a+b chia hết cho 2.3 hay chia hết cho 6

Vậy: 4^a+a+b chia hết cho 6 (đpcm)

Chu Văn Tĩnh
Xem chi tiết
Nguyễn Anh Quân
1 tháng 3 2018 lúc 21:50

b, a+1 và b+2007 chia hết cho 6

=> a+1 và b+2007 đều chẵn

=> a và b đều lẻ 

=> a+b chẵn

Mà a là số nguyên dương nên 4^a chẵn

=> 4^a+a+b chẵn

=> 4^a+a+b chia hết cho 2 (1)

Lại có : a+1 và b+2007 chia hết cho 3

=> a chia 3 dư 2 và b chia hết cho 3

=> a+b chia 3 dư 2

Mặt khác : 4^a = (3+1)^a = B(3)+1 chia 3 dư 1

=> 4^a+a+b chia hết cho 3 (2)

Từ (1) và (2) => 4^a+a+b chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )

Tk mk nha

Than toan hoc
30 tháng 6 2020 lúc 21:26

Vì chưa thấy ai giải câu a nên thầy sẽ giải hộ nhé

Ta có \(32\equiv1\left(mod31\right)\Rightarrow32^{402}\equiv1^{402}=1\left(mod31\right)\)(Theo thuyết đồng dư)

nên \(32^{402}=2^{2010} \)chia 31 dư 1 suy ra \(2^{2011}\)chia 31 dư 2

Phần còn lại em tự làm nhé

Khách vãng lai đã xóa
Trần Anh
Xem chi tiết
Kiệt Nguyễn
17 tháng 2 2020 lúc 20:42

Ta có: \(b+2019=\left(b+3\right)+2016\)(*)

Mà \(2016⋮6\)kết hợp với \(\left(^∗\right)⋮6\Rightarrow b+3⋮6\)

Lại có: a + 1 chia hết cho 6 nên \(\left(a+1\right)+\left(b+3\right)⋮6\)

\(\Rightarrow a+b+4⋮6\)

\(\Rightarrow a+b+4^a+\left(4-4^a\right)⋮6\)(1)

Xét a + 1 chia hết cho 6 nên a chia 6 dư 5.Đặt a = 6k + 5

\(\Rightarrow4-4^a=4-4^{6k+5}=4\left(1-4^{6k+4}\right)\)

Ta có:\(4\left(1-4^{6k+4}\right)⋮2\)

Mặt khác: \(1\text{≡}4\left(mod3\right)\)và \(4^{6k+4}\text{≡}4\left(mod3\right)\)

\(\Rightarrow\left(1-4^{6k+4}\right)⋮3\)

Lúc đó \(4\left(1-4^{6k+4}\right)⋮6\)(vì (2,3)=1) (2)

Từ (1) và (2) suy ra \(a+b+4^a⋮6\left(đpcm\right)\)

Khách vãng lai đã xóa
Phạm Hải Yến
Xem chi tiết
Kiệt Nguyễn
4 tháng 3 2020 lúc 16:08

Câu hỏi của Trần Anh - Toán lớp 8 - Học toán với OnlineMath

Tham khảo!

Khách vãng lai đã xóa