tìm x thuộc Z để: x+4/x-2 + 2x-5/x-2 là số nguyên
Cho A= 3x+2/x-3 và B= x2+3x-7/x+3.
a, Tính A khi x=1, x=2, x=5/2.
b, Tìm x thuộc Z để A là số nguyên.
c, Tìm x thuộc Z để B là số nguyên.
d, Tìm x thuộc Z để A, B cùng là số nguyên.
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.
Tìm x thuộc Z để giá trị của các phân số sau đều là số nguyên: 1. A=x-1 phần x+3 2. B=2x-5 phần x+2
1: Để A nguyên thì x+3-4 chia hết cho x+3
=>\(x+3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{-2;-4;-1;-5;1;-7\right\}\)
2: Để B nguyên thì 2x+4-9 chia hết cho x+2
=>\(x+2\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(x\in\left\{-1;-3;1;-5;7;-11\right\}\)
1) tìm số nguyên x để 4x-6/ 2x+1
2) Tìm x thuộc z để: 3.(x - 3).(x + 5)< 0
3 tìm x
1/3-(2/3-x + 5/4= 7/12 -(5/2 - 13/6)
\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{7}{12}-\left(\frac{5}{2}-\frac{13}{6}\right)\)
\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{7}{12}-\frac{1}{3}\)
\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{1}{4}\)
\(\frac{2}{3}-x+\frac{5}{4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{2}{3}-x+\frac{5}{4}=\frac{1}{12}\)
\(\frac{2}{3}-x=\frac{1}{12}-\frac{5}{4}\)
\(\frac{2}{3}-x=-\frac{7}{6}\)
\(x=\frac{2}{3}-\left(-\frac{7}{6}\right)\)
\(x=\frac{2}{3}+\frac{7}{6}\)
\(x=\frac{11}{6}\)
a, Tính A khi x=1, x=2, x=5/2.
b, Tìm x thuộc Z để A là số nguyên.
c, Tìm x thuộc Z để B là số nguyên.
d, Tìm x thuộc Z để A, B cùng là số nguyên.
1. Tìm tất cả các phân số = phân số 34/51 và có mẫu là số tự nhiên ngỏ hơn 16
2. Cho A= 5/n-4
a, Tìm n thuộc Z để A là phân số
b, tìm n thuộc z để a là số nguyên
3. Cho B=x-2/x+51
a, tìm x thuộc z để b là phân số
b, tìm x thuộc z để b là số nguyên
tìm x thuộc z để biểu thức sau là số nguyên b=x^2+2x+1 / x^2-1
\(\dfrac{x^2+2x+1}{x^2-1}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}\)
vậy để biểu thức là số nguyên thì
`2` phải chia hết cho `x-1`
`=>x-1` thuộc tập hợp ước của 2
mà `x` thuộc `Z` nên ta có bảng sau
x-1 | 1 | -1 | 2 | -2 |
x | 2(tm) | 0(tm) | 3(tm) | -1(tm) |
vậy \(x\in\left\{2;0;3;-1\right\}\)
B=(x+1)^2/(x+1)(x-1)=(x+1)/(x-1)
Để B nguyên thì x-1+2 chia hết cho x-1
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3\right\}\)
4) Tìm a thuộc Z để phương trình sau có nghiệm duy nhất là số nguyên
a^2x+2x=3(a+1-ax)
5) Tìm m để phương trình: (m^2+5)x=2-2mx
có nghiệm duy nhất đạt giá trị lớn nhất
6) Tìm tất cả các số thực a không âm sao cho phương trình: (a^2-4)x=a^2-ma+16 (ẩn x)
có nghiệm duy nhất là số nguyên
Tìm x thuộc Z để các số hữ tỷ sau là số nguyên
a) F=3z-2/ x+3
b) B=x ngũ 2 -2x=4/ x+1
mình ghi hơi nhầm câu ạ là 3x nhé mn. Cảm ơn
Bài 1: Tìm số nguyên n để :
a) C=n/n-2 thuộc Z
b) D=n/n+1 thuộc Z
c) E=3n+5/n+1 thuộc Z
Bài 2: Tìm số nguyên x,biết :
a) x-2/2x-2=1/3
b) x-2/4=16/(x-2)
c) x/4=5/2
Bài 1:
a, C=\(\frac{n}{n-2}=\frac{n-2+2}{n-2}=1+\frac{2}{n-2}\)
Để \(C\in Z\)thì \(\frac{2}{n-2}\in Z\)=> n-2\(\in\)Ư(2)=\(\left\{\pm1,\pm2\right\}\).Ta có bảng:
n-2 | -2 | -1 | 1 | 2 |
n | 0 | 1 | 3 | 4 |
Câu b lm tg tự thuộc Ư(1)
Bài 1:
c, E=\(\frac{3n+5}{n+1}=\frac{3n+3+2}{n+1}=\frac{3\left(n+1\right)+2}{n+1}=3+\frac{2}{n+1}\)
Để \(E\in Z\)thì \(\frac{2}{n+1}\in Z\)=> n+1\(\inƯ\left(2\right)=\left\{\pm1,\pm2\right\}\)Ta có bảng:
n+1 | -2 | -1 | 1 | 2 |
n | -3 | -2 | 0 | 1 |