Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức
Xem chi tiết
Khôi Bùi
19 tháng 3 2019 lúc 12:12

Ta có : \(\frac{12x^2+12x+11}{4x^2+4x+3}=\frac{5y^2-10y+9}{y^2-2y+2}\)

\(\Leftrightarrow\frac{3\left(4x^2+4x+3\right)+2}{4x^2+4x+3}=\frac{5\left(y^2-2y+2\right)-1}{y^2-2y+2}\)

\(\Leftrightarrow3+\frac{2}{4x^2+4x+3}=5-\frac{1}{y^2-2y+2}\)

Do \(\frac{2}{4x^2+4x+3}=\frac{2}{\left(2x+1\right)^2+2}\le\frac{2}{2}=1\) \(\Rightarrow3+\frac{2}{4x^2+4x+3}\le4\left(1\right)\)

\(\frac{1}{y^2-2y+2}=\frac{1}{\left(y-1\right)^2+1}\le\frac{1}{1}=1\) \(\Rightarrow5-\frac{1}{y^2-2y+2}\ge5-1=4\left(2\right)\)

Từ ( 1 ) ; ( 2 ) \(\Rightarrow VT=VP=4\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=1\end{matrix}\right.\)

Vậy ....

Nguyễn Thị Thanh Trúc
Xem chi tiết
Swifties
Xem chi tiết
Trần Quốc Khanh
28 tháng 2 2020 lúc 8:12

a/\(\Leftrightarrow\left(12x^2+12x+11\right)\left(y^2-2y+2\right)=\left(4x^2+4x+3\right)\left(5y^2-10y+9\right)\)

\(\Leftrightarrow12x^2y^2-24x^2y+24x^2+12xy^2-24xy+24x+11y^2-22y+22=20x^2y^2-40x^2y+36x^2+20xy^2-40xy+36x+15y^2-30y+36\)

Có sai đề ko cậu

Khách vãng lai đã xóa
Swifties
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 3 2020 lúc 13:26

a/ ĐKXĐ: ...

Đặt \(x^2-x=t\)

\(\frac{t}{t+1}-\frac{t+2}{t-2}=1\Leftrightarrow t\left(t-2\right)-\left(t+1\right)\left(t+2\right)=\left(t+1\right)\left(t-2\right)\)

\(\Leftrightarrow t^2+4t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x=0\\x^2-x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0;1\\x^2-x+4=0\left(vn\right)\end{matrix}\right.\)

b.

\(\Leftrightarrow\frac{3\left(2x+1\right)^2+8}{\left(2x+1\right)^2+2}=\frac{5\left(y-1\right)^2+4}{\left(y-1\right)^2+1}\)

Đặt \(\left\{{}\begin{matrix}2x+1=a\\y-1=b\end{matrix}\right.\)

\(\Rightarrow\frac{3a^2+8}{a^2+2}=\frac{5b^2+4}{b^2+1}\Leftrightarrow\left(3a^2+8\right)\left(b^2+1\right)=\left(a^2+2\right)\left(5b^2+4\right)\)

\(\Leftrightarrow3a^2b^2+3a^2+8b^2=5a^2b^2+4a^2+10b^2\)

\(\Leftrightarrow2a^2b^2+a^2+2b^2=0\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=1\end{matrix}\right.\)

Khách vãng lai đã xóa
nguyễn thị hồng hạnh
Xem chi tiết
Nguyên Walker (Walker Of...
Xem chi tiết

\(\Leftrightarrow x^4-4x^3+12x^2-32x+32=\left(y-5\right)^2\)

\(\Leftrightarrow\left(x-2\right)^2\left(x^2+8\right)=\left(y-5\right)^2\)

- Với \(x=2\Rightarrow y=5\)

- Với \(x\ne2\Rightarrow x-2\) là ước của \(y-5\) 

Đặt \(y-5=n\left(x-2\right)\)

\(\Rightarrow\left(x-2\right)^2\left(x^2+8\right)=n^2\left(x-2\right)^2\)

\(\Rightarrow x^2+8=n^2\)

\(\Rightarrow\left(n-x\right)\left(n+x\right)=8\)

\(\Rightarrow\left[{}\begin{matrix}x=1;n=-3\Rightarrow y=8\\x=-1;n=-3\Rightarrow y=14\\x=1;n=3\Rightarrow y=2\\x=-1;n=3\Rightarrow y=-4\end{matrix}\right.\) 

Lê Vương Đạt
Xem chi tiết
Nguyễn Ngọc Anh Minh
11 tháng 3 2021 lúc 14:17

\(\Leftrightarrow\frac{6x+5}{12x+9}-\frac{3x-7}{12x-9}=\frac{4x^2+10x-7}{16x^2-9}.\)

\(\Leftrightarrow\frac{\left(6x+5\right)\left(12x-9\right)-\left(3x-7\right)\left(12x+9\right)}{\left(3.4.x\right)^2-\left(3.3\right)^2}=\frac{4x^2+10x-7}{16x^2-9}\)

\(\Leftrightarrow\frac{72x^2+6x-45-\left(36x^2-57x-63\right)}{3^2\left(16x^2-9\right)}=\frac{4x^2+10x-7}{16x^2-9}\)

ĐK: \(16x^2-9\ne0\Leftrightarrow x^2\ne\left(\frac{3}{4}\right)^2\Rightarrow x\ne\pm\frac{3}{4}\)

\(\Leftrightarrow72x^2+6x-45-36x^2+57x+63=36x^2+90x-63\)

\(\Leftrightarrow27x=81\Leftrightarrow x=3\)

Khách vãng lai đã xóa
21051104675-GB
Xem chi tiết
21051104675-GB
22 tháng 2 2020 lúc 14:38

ai giúp mình câu (a) với ạ

Khách vãng lai đã xóa
Nguyễn Việt Lâm
22 tháng 2 2020 lúc 16:58

ĐKXĐ: \(x\ne\pm\frac{3}{2}\)

\(\frac{1}{\left(2x-3\right)^2}+\frac{3}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x+3\right)^2}=0\)

\(\Leftrightarrow\frac{1}{\left(2x-3\right)^2}-\frac{1}{\left(2x-3\right)\left(2x+3\right)}+\frac{4}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x-3\right)^2}=0\)

\(\Leftrightarrow\frac{1}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)-\frac{4}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{2x-3}-\frac{4}{2x+3}\right)\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2x-3\left(vn\right)\\2x+3=4\left(2x-3\right)\Rightarrow x=\frac{5}{2}\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Châu Anh
Xem chi tiết