Bài 2: Phương trình bậc nhất một ẩn và cách giải

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Swifties

Giải các phương trình sau:

a) \(\frac{x^2-x}{x^2-x+1}-\frac{x^2-x+2}{x^2-x-2}=1\)

b) \(\frac{12x^2+12x+11}{4x^2+4x+3}=\frac{5y^2-10y+9}{y^2-2y+2}\)

Nguyễn Việt Lâm
3 tháng 3 2020 lúc 13:26

a/ ĐKXĐ: ...

Đặt \(x^2-x=t\)

\(\frac{t}{t+1}-\frac{t+2}{t-2}=1\Leftrightarrow t\left(t-2\right)-\left(t+1\right)\left(t+2\right)=\left(t+1\right)\left(t-2\right)\)

\(\Leftrightarrow t^2+4t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x=0\\x^2-x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0;1\\x^2-x+4=0\left(vn\right)\end{matrix}\right.\)

b.

\(\Leftrightarrow\frac{3\left(2x+1\right)^2+8}{\left(2x+1\right)^2+2}=\frac{5\left(y-1\right)^2+4}{\left(y-1\right)^2+1}\)

Đặt \(\left\{{}\begin{matrix}2x+1=a\\y-1=b\end{matrix}\right.\)

\(\Rightarrow\frac{3a^2+8}{a^2+2}=\frac{5b^2+4}{b^2+1}\Leftrightarrow\left(3a^2+8\right)\left(b^2+1\right)=\left(a^2+2\right)\left(5b^2+4\right)\)

\(\Leftrightarrow3a^2b^2+3a^2+8b^2=5a^2b^2+4a^2+10b^2\)

\(\Leftrightarrow2a^2b^2+a^2+2b^2=0\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=1\end{matrix}\right.\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Swifties
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Lâm Anh Nguyễn
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Yến Nhi
Xem chi tiết