Cho tam giác ABC có góc A = 90 .Vẽ AH vuông góc với BC .Chứng minh : AB+AC < AH + BC
Cho tam giác ABC có góc A = 90 .Vẽ AH vuông góc với BC .Chứng minh : AB+AC < AH + BC
link tham khảo:
https://hoc247.net/hoi-dap/toan-7/chung-minh-ab-ac-bc-ah-biet-tam-giac-abc-vuong-tai-a-co-ah-vuong-goc-bc-faq256527.html
Cho tam giác ABC có góc A bằng 90 độ. Đường thẳng AH vuông góc với BC tại H.Trên BC lấy D sao cho BD=BA
a, Chứng minh : Góc BAD = góc ADB
b, Chứng minh : AD là phân giác của góc HAD
c, Vẽ DK vuông góc AC ( K\(\in\)AC) . Chứng minh AH=AK
d, AB+AC < BC+2AH
a) Xét ΔBAD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAD}=\widehat{BDA}\)(hai góc ở đáy)
b) Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)(tia AD nằm giữa hai tia AB,AC)
\(\widehat{HAD}+\widehat{HDA}=90^0\)(ΔHAD vuông tại H)
mà \(\widehat{BAD}=\widehat{HDA}\)(cmt)
nên \(\widehat{CAD}=\widehat{HAD}\)
hay AD là tia phân giác của \(\widehat{HAD}\)
c) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)
Suy ra: AH=AK(hai cạnh tương ứng)
cho tam giác ABC cân tại A (góc A < 90 độ). Vẽ AH vuông góc với BC tại H
a). Chứng minh: tam giác ABH = tam iacs ACH rồi suy ra AH là tia phân giác góc A
b). Từ H vẽ AH vuông góc với AB tại E, HF vuông góc với AC tại F. Chứng minh tam giác EAH = tam giác FAH rồi suy ra tam giác HEF là tam giác cân
c). Đường thẳng vuông góc với AC tại C cắt tia AH cắt K. Chứng minh: EH // BK
d). Qua A, vẽ đường thẳng song song với BC cắt tia HF tại N. Trên tia HE lấy điểm N sao cho HM = HN. Chứng minh: M, A, N thẳng hàng
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
b: Xét ΔEAH vuông tại E và ΔFAH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔEAH=ΔFAH
Suy ra: HE=HF
hay ΔHEF cân tại H
c: Xét ΔACK và ΔABK có
AC=AB
\(\widehat{CAK}=\widehat{BAK}\)
AK chung
Do đó: ΔACK=ΔABK
Suy ra: \(\widehat{ACK}=\widehat{ABK}=90^0\)
=>BK\(\perp\)AB
hay BK//EH
Cho tam giác ABC , góc A = 90 . Kẻ AH vuông góc với BC . Chứng minh AH + BC > AB + AC
cho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBAcho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBA~ AbC, B tính độ dài BC và AH AbC, B tính độ dài BC và AH
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
Cho tam giác ABC , góc A = 90 . Kẻ AH vuông góc với BC . Chứng minh AH + BC > AB + AC
Cho tam giác ABC cân tại A (góc A < 90 độ). Vẽ AH vuông góc với BC tại H.
a. Chứng minh tam giác AHC = tam giác AHB
b. Biết AB=15cm, bh=9cm. Tính dộ dài đoạn thẳng AH
c. Vẽ hm vuông góc với ac(m ∈ ab), hn vuông góc với ac(n ∈ ac). chứng minh rằng am=an
d. chứng minh rằng mn // bc
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: AH=12cm
c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
d: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
Cho tam giác ABC, vẽ AH vuông góc với BC (H thuộc BC). Biết AB = 10cm, AH = 8cm, HC = 6cm
a) Tính AC và BH?
b) Chứng minh: góc ABC bằng góc ACB.
c) Vẽ HM vuông góc với AB, HN vuông góc với AC (M thuộc AB, N thuộc AC). Chứng minh: tam giác HMN là tam giác cân.
a, Theo định lí Pytago tam giác AHC vuông tại H
\(AC=\sqrt{AH^2+HC^2}=\sqrt{64+36}=10\)cm
Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A
mà AH là đường cao đồng thời là đường trung tuyến
=> HC = HB = 6 cm
b, Vì tam giác ABC cân tại A => ^ABC = ^ACB
c, Vì tam giác ABC cân tại A, AH đồng thời là đường phân giác
=> ^BAH = ^HAC
Xét tam giác AMH và tam giác ANH có :
^AMH = ^ANH = 900
AH _ chung
^BAH = ^NAH ( cmt )
Vậy tam giác AMH = tam giác ANH ( ch - gn )
=> MH = NH ( 2 cạnh tương ứng )
Xét tam giác HMN có MH = NH ( cmt )
=> tam giác HMN cân tại H
cho tam giác ABC vuông tại A , có góc C = 30 độ . Trên cạnh BC lấy điểm D sao cho BD = BA.
a. chứng minh tam giác ABD đều , tính góc DAC
b. vẽ DE vuông góc với AC , chứng minh tam giác ADE = tam giác CDE
c. cho AB = 5cm . Tính BC và AC
d. Vẽ AH vuông góc với BC. chứng minh AH+Bc lớn hơn AB+AC