Giai PT : \(\dfrac{x}{40}+\dfrac{x}{30}=0,75\)
Giai PTr :
\(\dfrac{x}{40}+\dfrac{x}{30}=\dfrac{3}{4}\)
\(\dfrac{x}{30}+\dfrac{x}{40}=\dfrac{3}{4}\)\(\Leftrightarrow x\left(\dfrac{1}{40}+\dfrac{1}{30}\right)=\dfrac{3}{4}\)\(\Leftrightarrow x.\dfrac{7}{120}=\dfrac{3}{4}\)\(\Leftrightarrow x=\dfrac{90}{7}\)
Vậy tập nghiệm của pt là S=\(\left\{x=\dfrac{90}{7}\right\}\)
\(\dfrac{x}{40}+\dfrac{x}{30}=\dfrac{3}{4}\\ \dfrac{30x}{120}+\dfrac{40x}{120}=\dfrac{90}{120}\\ \dfrac{70x}{120}=\dfrac{90}{120}\\ \Rightarrow70x=90\\ \Rightarrow x=\dfrac{90}{70}\\ x=\dfrac{9}{7}\)
Mẫu chung là 120
<=> 3x + 4x = 90 ( Quy Đồng Khử Mẫu )
<=> 7x = 90
<=> x = 90/7
Vậy Phương trình có tập nghiệm S = {90/7}
Bạn đổi ra số thập phân cũng được , nó xấp xỉ 12.86
\(\dfrac{3}{4}\) x 36 + 75% x 23 + \(\dfrac{75}{100}\) + 0,75 x 40
= ..... x 36 + ....... x 23 + ..... + 0,75 x 40
= ..... x ( 36 + 23 + 1 + ..... )
= ..... x 100
= .....
giai PT
\(\dfrac{x}{60}+ \dfrac{x}{45}+1,5=\dfrac{32}{5}\)
x/60 + x/45 + 1,5 = 32/5
3x + 4x + 270 = 1152
7x + 270 = 1152
7x = 1152 − 270
7x = 882
x = 882/7
x = 126
\(\dfrac{x}{60}+\dfrac{x}{45}+1,5=\dfrac{32}{5}\)
\(\Leftrightarrow\)\(\dfrac{x}{60}+\dfrac{x}{45}+\dfrac{3}{2}=\dfrac{32}{5}\)
\(\Leftrightarrow\dfrac{3x}{180}+\dfrac{4x}{180}+\dfrac{270}{180}=\dfrac{1152}{180}\)
\(\Leftrightarrow7x+270=1152\)
\(\Leftrightarrow7x=882\)
\(\Leftrightarrow x=126\)
Giai PT
\(\dfrac{x-1}{x+1}-\dfrac{1}{x}=\dfrac{-1}{x\left(x+1\right)}\)
\(\Leftrightarrow x^2-x-x-1=-1\)
=>x(x-2)=0
=>x=2
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne-1\\x\ne0\end{matrix}\right.\)
\(\dfrac{x-1}{x+1}-\dfrac{1}{x}=\dfrac{-1}{x\left(x+1\right)}\\ \Leftrightarrow\dfrac{x\left(x-1\right)}{x\left(x+1\right)}-\dfrac{\left(x+1\right)}{x\left(x+1\right)}=\dfrac{-1}{x\left(x+1\right)}\\ \Leftrightarrow\dfrac{x^2-x-x-1}{x\left(x+1\right)}=\dfrac{-1}{x\left(x+1\right)}\\ \Leftrightarrow x^2-2x-1=-1\\ \Leftrightarrow x^2-2x=0\\ \Leftrightarrow x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
Giai pt
\(\dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\)
\(\dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\left(ĐKXĐ:x\ne\pm1\right)\)
\(\Leftrightarrow\dfrac{2x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow2x^2+2x-x^2+x=x^2-1\)
\(\Leftrightarrow2x^2+2x-x^2+x-x^2+1=0\)
\(\Leftrightarrow3x+1=0\)
\(\Leftrightarrow x=\dfrac{-1}{3}\left(nhận\right)\)
-Vậy \(S=\left\{\dfrac{-1}{3}\right\}\)
giải pt
\(\dfrac{x+35}{1984}-\dfrac{x+30}{1989}+\dfrac{x+19}{2000}+\dfrac{x+23}{1996}\text{=}-2\)
`[x+35]/1984-[x+30]/1989+[x+19]/2000+[x+23]/[1996=-2`
`<=>[x+35]/1984+1-[x+30]/1989-1+[x+19]/2000+1+[x+23]/1996+1=0`
`<=>[x+2019]/1984-[x+2019]/1989+[x+2019]/2000+[x+2019]/1996=0`
`<=>(x+2019)(1/1984-1/1989+1/2000+1/1996)=0`
`=>x+2019=0`
`<=>x=-2019`
\(\dfrac{x+35}{1984}-\dfrac{x+30}{1989}+\dfrac{x+19}{2000}+\dfrac{x+23}{1996}\text{=}-2\)
\(\Leftrightarrow\dfrac{x+35}{1984}-\dfrac{x+30}{1989}+\dfrac{x+19}{2000}+\dfrac{x+23}{1996}+3-1\text{=}0\)
\(\Leftrightarrow\left(\dfrac{x+35}{1984}+1\right)-\left(\dfrac{x+30}{1989}+1\right)+\left(\dfrac{x+19}{2000}+1\right)+\left(\dfrac{x+23}{1996}+1\right)\text{=}0\)
\(\Leftrightarrow\dfrac{x+2019}{1984}-\dfrac{x+2019}{1989}+\dfrac{x+2019}{2000}+\dfrac{x+2019}{1996}\text{=}0\)
\(\Leftrightarrow\left(x+2019\right)\left(\dfrac{1}{1984}-\dfrac{1}{1989}+\dfrac{1}{2000}+\dfrac{1}{1996}\right)\text{=}0\)
\(\Leftrightarrow\left(x+2019\right)\text{=}0\)
\(\Leftrightarrow x\text{=}-2019\)
*Sửa: Lỗi ở đề
`[x+35]/1984-[x+30]/1989+[x+19]/2000+[x+23]/1996=-2`
\(2\sqrt{x}+\dfrac{1}{\sqrt{x}}=2x+\dfrac{1}{2x}+\dfrac{1}{2}\)
giai pt vo ti
Giai pt: \(\left\{{}\begin{matrix}\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\left(x+y\right)=15\\\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)\left(x^2+y^2\right)=85\end{matrix}\right.\)
\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)
=) Giai Pt tren !!!
\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\) ( ĐK : \(x\ne-2\) )
\(\Leftrightarrow\dfrac{12}{x^3+2^3}=1+\dfrac{1}{x+2}\)
\(\Leftrightarrow\dfrac{12}{\left(x+2\right)\left(x^2-2x+4\right)}=\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}+\dfrac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Leftrightarrow12=\left(x+2\right)\left(x^2-2x+4\right)+x^2-2x+4\)
\(\Leftrightarrow x^3+8+x^2-2x+4=12\)
\(\Leftrightarrow x^3+x^2-2x=0\)
\(\Leftrightarrow x\left(x^2+x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=1\left(N\right)\\x=-2\left(L\right)\end{matrix}\right.\)
Vậy \(S=\left\{0;1\right\}\)