Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen phuong tram
Xem chi tiết
Diệu Huyền
1 tháng 11 2019 lúc 10:00

Bạn ơi mình nghĩ bạn viết đề vậy thì khó vẽ được cái hình.

Khách vãng lai đã xóa
Vũ Minh Tuấn
1 tháng 11 2019 lúc 10:32

Sao lại \(CK\perp AB\) được. Mình nghĩ là \(CK\perp AB\) chứ? nguyen phuong tram

Khách vãng lai đã xóa
Vũ Minh Tuấn
1 tháng 11 2019 lúc 10:33

Sao lại \(CK\perp BC\) được. Mình nghĩ là \(CK\perp AB\) nhé. nguyen phuong tram

Khách vãng lai đã xóa
Đỗ Thái Tuấn
Xem chi tiết
nguyen phuong tram
Xem chi tiết
phuong
Xem chi tiết
Rin Lữ
Xem chi tiết
Nguyễn Mai Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 6 2020 lúc 19:52

a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABC}\), H∈BC)

Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)

b) Ta có: ΔABC vuông tại A(gt)

\(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-60^0=30^0\)

Ta có: BE là tia phân giác của \(\widehat{ABC}\)(gt)

\(\Rightarrow\widehat{ABE}=\widehat{CBE}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0\)

Xét ΔEBC có \(\widehat{ECB}=\widehat{EBC}\left(=30^0\right)\)

nên ΔEBC cân tại E(định lí đảo của tam giác cân)

⇒EB=EC

Xét ΔEBH vuông tại H và ΔECH vuông tại H có

EB=EC(cmt)

EH chung

Do đó: ΔEBH=ΔECH(cạnh huyền-cạnh góc vuông)

⇒HB=HC(hai cạnh tương ứng)

c) Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔABE(EA và EC là hai tia đối nhau)

nên \(\widehat{BEC}=\widehat{BAE}+\widehat{ABE}\)(định lí góc ngoài của tam giác)

\(\Rightarrow\widehat{BEC}=90^0+30^0=120^0\)

Ta có: ΔEBH=ΔECH(cmt)

\(\widehat{BEH}=\widehat{CEH}\)(hai góc tương ứng)

\(\widehat{BEH}+\widehat{CEH}=\widehat{BEC}\)(tia EH nằm giữa hai tia EB,EC)

nên \(\widehat{BEH}=\widehat{CEH}=\frac{\widehat{BEC}}{2}=\frac{120^0}{2}=60^0\)

\(\Leftrightarrow\widehat{KEH}=60^0\)

Ta có: HK//BE(gt)

\(\widehat{BEH}=\widehat{KHE}\)(hai góc so le trong)

\(\widehat{BEH}=60^0\)(cmt)

nên \(\widehat{KHE}=60^0\)

Xét ΔKHE có

\(\widehat{KEH}=60^0\)(cmt)

\(\widehat{KHE}=60^0\)(cmt)

Do đó: ΔKHE đều(dấu hiệu nhận biết tam giác đều)

d) Xét ΔAEI vuông tại A có EI là cạnh huyền(EI là cạnh đối diện với \(\widehat{EAI}=90^0\))

nên EI là cạnh lớn nhất trong ΔAEI(trong tam giác vuông, cạnh huyền là cạnh lớn nhất)

hay EI>EA

mà EA=EH(ΔBAE=ΔBHE)

nên IE>EH(đpcm)

ha tu anh
Xem chi tiết
Đinh Kim Yến
Xem chi tiết
ha Bui
Xem chi tiết