chứng minh ( 2+3) và ( 2n+5) là 2 số nguyên tố cùng nhau (với n là số tự nhiên bất kì )
=Cho n là số tự nhiên bất kì : Chứng minh rằng n+3 và 2n+5 là 2 số nguyên tố cùng nhau
k mik CMR rùi mà luwofi viết lắm thông cảm nha!!!
Gọi ƯCLN(n+3,2n+5) = d
=> n+3 chia hết cho d, 2n+5 chia hết cho d
=> 2(n+3) chia hết cho d, 2n+5 chia hết cho d
=> 2n+6 chia hết cho d,2n+5 chia hết cho d
=> (2n+6)-(2n+5) chia hết cho d
=> 1 chia hết cho d =>đpcm.
viết cho mình đi bạn mình dang làm đề kiểm tra
Chứng minh (n+3)và(2n+5)là 2 số nguyên tố cùng nhau(với n là số tự nhiên bất kỳ)
Gọi d là là ước chung lớn nhất của ( n+3) và ( 2n+5)
Có (n+3) chia hết cho d.Suy ra (n+3)x2 chia hết cho d= (2n+6) chia hết cho d
Có (2n +5) chia hết cho d. Suy ra (2n+ 5) chia hết cho d
Suy ra : (2n+6) - (2n+5) chia hết cho d
2n+6 - 2n-5 chia hết cho d
1 chia hết cho d
Có chia hết cho d suy ra d thuộc{ 1:-1}
Vì d là số tự nhiên nên d =1
Vậy ( n+3) và (2n+5) là số nguyên tố cùng nhau
CHÚC BẠN HỌC GIỎI
Cho n là số tự nhiên bất kì
Chứng minh ( n + 3) và (2n +5) là hai số nguyên tố cùng nhau
Gọi a là ƯCLN ( n+3 ; 2n+5 ) ĐK( n thuộc N(ko biết ghi dấu thuộc)
Ta có n+3 chia hết cho a và 2n+5 chia hết cho a
Suy ra: 2(n+3) chia hết cho a và 2n+5 chia hết cho a
Suy ra: 2n+6 chia hết cho a
Suy ra: (2n+6)-(2n+5) chia hết cho a
Suy ra: 1 chia hết cho a
Suy ra: n+3 và 2n+5 là NTCN
BÀI 1 :cho m và n thuộc N* thỏa (m,n)=1 tìm Ước chung lớn nhất của 2 số (4m+3n ; 5m + 2n)
BÀI 2: cho n là số tự nhiên bất kì chứng minh : ( 2n+5) là 2 số nguyên tố cùng nhau.
câu 1 :
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)
cho n là số tự nhiêu bất kì
chứng minh (n+3)và (2n+5) nguyên tố cùng nhau
n+3 chia hết cho d
2n+5 chia hết cho d
2n+3 chia hết cho d
2n+6 chia hết cho d
2n+6-2n+5 chia hết cho d
(2n-2n)+(6-5)
1 chia hết cho d
=>n+3 và 2n+5 là 2 số nt cùng nhau
tk cho mình nha
ủa, tại sao theo đề là có n+3 sao lúc giải lại ghi là 2n+3 còn ko giải thích nữa
Cho n là một số tự nhiên bất kì.
Chứng minh n+3 và 2n+5 là hai số nguyên tố cùng nhau.
(Giải chi tiết giùm chút nha !!!)
Gọi d là ƯCLN của n+3 và 2n+5
Ta có: n+3 chia hết cho d
=> 2(n+3) chia hết cho d
=> 2n+6 chia hết cho d
=> 2n+5 chia hết cho d
=> (2n+6)-(2n+5) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
=> d=1
Vậy n+3 và 2n+5 là hai số nguyên tố cùng nhau (vì chúng có ƯCLN là 1).
Cho n là số tự nhiên bất kì:Chứng minh n+3 và 2n+5 là 2 số nguyên tố cùng nhau
Gọi d là ƯCLN(n+3;2n+5)
Ta có n+3 chia hết cho d; 2n+5 chia hết cho d
=>n+3-2n+5 chia hết cho d
=>2n+6-2n+5=1 chia hết cho d
=>ƯCLN(N+3;2n+5)=1
Vậy n+3 và 2n+5 là 2 nguyên tố cùng nhau
Chứng minh 2 số 2n+5 và n+2 là số nguyên tố cùng nhau với n là số tự nhiên
Gọi d là ước chung nguyên tố (d thuộc N) của 2n+5 và n+2, ta có:
(2n+5) chia hết cho d và (n+2) chia hết cho d
Từ (n+2) chia hết cho d => 2(n+2) cũng chia hết cho d
Ta có: (2n+5) chia hết cho d và 2(n+2) chia hết cho d => (2n+5) - 2(n+2) = 1 chia hết cho d
=> d = 1 => 2n+5 và n+2 nguyên tố cùng nhau
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.