Tính giá trị của đa thức
\(x^2y^2+x^4y^4+x^6y^6\) Tại x=1 và y = -1
Tính giá trị của mỗi đa thức trong các trường hợp sau :
A)x^2+2xy-3x^3+2y^3+3x^3-y^3 tại x = 5 và y = 4
b)xy - x2^2y^2 + x^4y^4 - x^6y^6 + x^8y^8 tại x = -1 và y = -1
a: \(A=x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=129\)
b: \(B=\left(-1\right)\cdot\left(-1\right)-\left(-1\right)^2\cdot\left(-1\right)^2+\left(-1\right)^4\cdot\left(-1\right)^4-\left(-1\right)^6\cdot\left(-1\right)^6=1-1+1-1=0\)
Cho đa thức A = \(\frac{7}{2}x^4y^3-5x^2y^5-6y+8x^2y^5-\frac{1}{3}x^4y^3-\frac{1}{2}y\)
Tính giá trị đa thức A tại x= -2 và y= \(\frac{3}{4}\)
Rút gọn A trước khi tính :
\(A=\left(\frac{7}{2}x^4y^3-\frac{1}{3}x^4y^3\right)+\left(8x^2y^5-5x^2y^5\right)-\left(6y+\frac{1}{2}y\right)\)
\(=\frac{19}{6}x^4y^3+3x^2y^5-\frac{13}{2}y\)
Thay \(x=-2,y=\frac{3}{4}\) vào A có :
\(A=\frac{19}{6}\cdot\left(-2\right)^4\cdot\left(\frac{3}{4}\right)^3+3\cdot\left(-2\right)^2\cdot\left(\frac{3}{4}\right)^5-\frac{13}{2}\cdot\frac{3}{4}\)
\(=\frac{171}{8}+\frac{729}{8192}-\frac{39}{8}\approx16,6\)
:)) Số xấu ....
Xét biểu thức A, ta suy ra:
\(A=\frac{19}{6}x^4y^3+3x^2y^5-\frac{-13}{2}y\)
Tại x=-2 và y=3/4 thì:
\(A=\frac{19}{6}\cdot\left(-2\right)^4\cdot\left(\frac{3}{4}\right)^3+3\cdot\left(-2\right)^2\cdot\left(\frac{3}{4}\right)^5-\frac{-13}{2}\cdot\frac{3}{4}\)
(phần này bạn tự tính)
\(\)
Cho đa thức M = 3x^6y+ 1/2x^4y^3 - 4y^7 - 4x^4y3 + 11 - 5x^6y+ 2y^7 -2
a) Thu gọn và tìm bậc của đa thức.
b) Tính giá trị của đa thức tại x=1 và y= -1
\(M=3x^6y+\frac{1}{2}x^4y^3-4y^7-4x^4y^3+11-5x^6y+2y^7-2\)
\(M=\left(3x^6y-5x^6y\right)+\left(\frac{1}{2}x^4y^3-4x^4y^3\right)+\left(-4y^7+2y^7\right)+\left(11-2\right)\)
\(M=-2x^6y-\frac{7}{2}x^4y^3-2y^7+9\)
Xét bậc của từng hạng tử
-2x6y có bậc là 7
-7/2x4y3 có bậc là 7
-2y7 có bậc là 7
=> Bậc của M = 7
Thay x = 1 , y = -1 vào M ta được :
\(M=-2\cdot1^6\cdot\left(-1\right)-\frac{7}{2}\cdot1^4\cdot\left(-1\right)^3-2\cdot\left(-1\right)^7+9\)
\(M=-2\cdot1\cdot\left(-1\right)-\frac{7}{2}\cdot1\cdot\left(-1\right)-2\cdot\left(-1\right)+9\)
\(M=2+\frac{7}{2}+2+9\)
\(M=\frac{33}{2}\)
Vậy giá trị của M = 33/2 khi x = 1 , y = -1
Ta có M = (3x6y - 5x6y) + (1/2.x4y3 - 4.x4.y3) - (4y7 + 2y7) + (11 - 2)
= -2x6y - 3,5x4y3 - 2y7 + 9
Bậc của đa thức M là 7
b) M(1 ; -1) = -2.16.(-1) - 3,5.14.(-1)3 - 2.(-1)7 + 9
= 2 + 3,5 + 2 + 9 = 16,5
Bài làm
a) Ta có: \(M=3x^6y+\frac{1}{2}x^4y^3-4y^7-4x^4y^3+11-5x^6y+2y^7-2\)
\(M=\left(3x^6y-5x^6y\right)+\left(\frac{1}{2}x^4y^3-4x^4y^3\right)+\left(-4y^7+2y^7\right)+\left(11-2\right)\)
\(M=-2x^6y-\frac{7}{2}x^4y^3-2y^7+9\)
Bậc của đa thức là 7 ( trong đa thức, thấy đơn thức nào có số mũ lớn nhất dưới dạng rút gọn thì đó là bậc của đa thức, thế thôi )
b) Thay x = 1; y = -1 vào M, ta được:
\(M=-2.1^6\left(-1\right)-\frac{7}{2}.1^4.\left(-1\right)^3-2.\left(-1\right)^7+9\)
\(M=2+\frac{7}{2}+2+9\)
\(M=\frac{4}{2}+\frac{7}{2}+\frac{4}{2}+\frac{18}{2}\)
\(M=\frac{33}{2}\)
Vậy \(M=\frac{33}{2}\)tại x = 1; y = -1
a) tính giá trị của biểu thức: x^2+2y tại x=2, y= –3 b) tính giá trị của biểu thức: x^2+2xy+y^2 tại x=4, y=6 c) tính giá trị của biểu thức: P= x^2-4xy+4y^2 tại x=1 và y= 1/2
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
Tính giá trị của mỗi đa thức sau :
a) \(x^2+2xy-3x^3+2y^3+3x^3-y^3\) tại \(x=5;y=4\)
b) \(xy-x^2y^2+x^4y^4-x^6y^6+x^8y^8\) tại \(x=-1;y=-1\)
a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.
Trước hết ta thu gọn đa thức
A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3
Thay x = 5; y = 4 ta được:
A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.
Vậy A = 129 tại x = 5 và y = 4.
b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.
Thay x = -1; y = -1 vào biểu thức ta được:
M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1 = 1.
\(a.\)\(x^2+2xy-3x^3+2y^3+3x^3-y^3\)
=\(x^2+2xy+y^3\)
\(thếx=5;y=4\) \(ta\) \(có\)
= \(5^2+2.5.4+4^3\)
= 25 + 40 + 64
=129
b.
\(xy-x^2y^2+x^4y^4-x^6y^6+x^8y^8\)
thế \(x=-1;y=-1\) ta có:
(-1).(-1) - \(\left(-1\right)^2.\left(-1\right)^2\)+\(\left(-1\right)^4.\left(-1\right)^4-\left(-1\right)^6.\left(-1\right)^6+\left(-1\right)^8.\left(-1\right)^8\)
= 1 - 1.1 +1.1 - 1.1 +1.1
= 1-1+1-1+1
= 1
Tính giá trị các đa thức sau :
a) \(5xy^2+2xy-3xy^2\) tại \(x=-2;y=-1\)
b) \(x^2y^2+x^4y^4+x^6y^6\) tại \(x=1;y=-1\)
a, Thay x= -2 và y = -1 vào đa thức
Ta có : 5xy\(^2\) + 2xy - 3xy\(^2\)
= ( 5xy\(^2\) - 3xy\(^2\) ) + 2xy
= 2xy\(^2\) + 2xy
= 2 . ( -2 ) . ( -1 ) + 2 . ( -2 ) . ( -1 )
= 4 + 4
= 8
Vậy 8 là giá trị của đa thức trên
Tính giá trị của đa thức:
B= xy + x^2y^2 + x^3y^3 + x^4y^4 +...+x^10y^10 tại x= -1;y=1
Thay x=1, y=-1, ta có:
B= (-1).1+(-1)2.12+...(-1)9.19+(-1)10.110
= (-1).1+1.1+...+(-1).1+1.1
= -1 + 1 +...+ (-1) + 1
= (-1+1)+...+(-1+1)
= 0+0+...+0=0
\(P=\left(xy\right)+\left(x^2y^2\right)-\left(x^4y^4\right)+\left(x^6y^6\right)-\left(x^8y^8\right)\)
Tính giá trị của P tại x=-1 và y=-1
\(P=\)\(\left(xy\right)+\left(xy\right)^2-\left(xy\right)^4+\left(xy\right)^6-\left(xy\right)^8\)
Ta có: \(xy=\left(-1\right).\left(-1\right)=1\)
Thay \(xy=1\)vào \(P\) ta có:
\(1+1^2-1^4+1^6-1^8\)\(=\)\(1+1-1+1-1\)\(=\)\(1\)
a, tính giá trị của biểu thức : B = x^2 + 2x + 1 + y^2 - 4y + 4 tại x = 99 và y=102.
b, phân tích đa thức thành nhân tử : 2x^2 - 2y^2 + 16x + 32
c, tìm x biết : x^2 - 3x + 2x -6 = 0
a) \(B=\left(x^2+2x+1\right)+\left(y^2-2.2.y+2^2\right)=\left(x+1\right)^2+\left(y-2\right)^2\)
thay x=99 và y=102 vào B ta có:
\(B=\left(99+1\right)^2+\left(102-2\right)^2=100^2-100^2=0\)
b)
b) \(2x^2+16x+32-2y^2=2\left(x^2+8x+16-y^2\right)=2\left(\left(x+4\right)^2-y^2\right)=2\left(x+4-y\right)\left(x+4+y\right)\)
\(x^2-3x+2x-6=x\left(x-3\right)+2\left(x-3\right)=\left(x-3\right)\left(x+2\right)=0\)
nếu x-3=0=>x=3
nếu x+2=0=>x=-2
nhớ k cả 3 nhé thanks bn nhìu