Cho tam giác ABC vuông tại A. Đường cao AH. đường trung tuyến kẻ từ B của tam giác ABH cắt đườn trung trực của AC tại D.CM: tam giác BCD vuông
Cho tam giác ABC vuông tại A, kẻ đường cao AH và trung tuyến AM. đường phân giác góc A, cắt đường trung trực BC tại D. Từ D kẻ DE vuông góc với BA và DF vuông góc với AC.
a, CMR: AD là phân giác góc HAM
b, 3 điểm E, M, F thẳng hàng
c, Tam giác ABC là tam giác vuông cân
Cho tam giác ABC vuông tại A, kẻ đường cao AH và trung tuyến AM. đường phân giác góc A, cắt đường trung trực BC tại D. Từ D kẻ DE vuông góc với BA và DF vuông góc với AC.
a, CMR: AD là phân giác góc HAM
b, 3 điểm E, M, F thẳng hàng
c, Tam giác ABC là tam giác vuông cân
Cho tam giác ABC đều. Hai đường cao BE và CD cắt nhau tại H. Cmr:
a) Tam giác BCD = tam giác CBE
b)Tam giác BHD = tam giác CHE
c) AH là đường trung trực của BC
d) Từ B kẻ đường thẳng ong song với DC cắt AC tại I. Cmr
d1) Tam giác BCI cân
d2) Tam giác ABI vuông
a) Xét ∆ vuông DCB và ∆ vuông EBC ta có :
BC chung
ABC = ACB ( ∆ABC đều )
=> ∆DCB = ∆EBC ( ch-gn)
b) Gọi giao điểm AH và BC là K
Vì ∆DCB = ∆EBC (cmt)
=> DB = EC
Xét ∆ vuông DHB và ∆ vuông EHC ta có :
DB = EC (cmt)
DHB = EHC ( đối đỉnh)
=> ∆DHB = ∆EHC (cgv-gn)
Vì DB = EC
AB = AC ( ∆ABC đều )
=> AD = AE
=> ∆ADE cân tại A
Xét ∆AHD và ∆AHE có :
AH chung
ADE = AED ( ∆ADE cân tại A )
AD = AE
=> ∆AHD = ∆AHE (c.g.c)
=> DAH = EAH
Hay AH là phân giác DAE
Mà ∆ADE cân tại A(cmt)
=> AH là trung trực DE
=> AH là trung trực BC
d) Vì ∆ABC đều
=> ABC = ACB = BAC = 60°
Vì ∆ADE cân tại A
Mà BAC = 60°
=> ∆ADE đều
=> ADE = AED = DAE = 60°
Ta có :
ADE + EDC = 90°
=> EDC = 90° - 60° = 30°
Mà DC//BI
=> EDC = CBI = 30° ( đồng vị )
Mà ACB + BCI = 180° ( kề bù)
=> BCI = 180° - 60° = 120°
Xét ∆BCI có :
CBI + BIC + ICB = 180°
=> BIC = 180° - 120° - 30° = 30°
=> CBI = CIB = 30°
=> ∆BCI cân tại C
Mà DC//BI
=> ADC = DBI = 90°
Hay ∆ABI vuông tại B
cho tam giác đều ABC. 2 đường cao BE và CD cắt nhau tại H. CMR:
a, tam giác BCD=CBE
b, tam giác HDB = CHE
c, AH là đường trung trực của AB
d, Từ B kẻ đường thẳng song song vói DC Cắt AC tại I. CM: tam giác BCI cân và Tam giác ABI vuông
a/ Xét hai tg vuông BCD và CBE có
^ABC=^ACB (ABC là tg đầu)
BC chung
=> tg BCD=tg CBE (theo trường hợp cạnh huyền và góc nhọn tương ứng bằng nhau)
b/
Ta có tg BCD=tg CBE (cmt) => ^HBC=^HCB (Tương ứng cùng phụ với góc ^ACB=^ACB)
=> tg BHC cân => HB=HC
Xét hai tg vuông HDB và CHE có
HB=HC (cmt)
^BHD=^CHE (đối đỉnh)
=> tg HDB=tg CHE (theo trường hợp cạnh huyền và góc nhọn tương ứng bằng nhau)
c/ Xét tam giác ABC có
BE, CD là đường cao => BE và CD cũng là trung trực (trong tam giác đều đường cao đồng thời là đường trung tuyến và đường trung trực)
=> H là giao của 3 đường trung trực => AH là trung trực của BC (Trong tam giác 3 đường trung trực đồng quy)
d/ Xét tam giác ABC có
CD là phân giác của ^ACB (trong tg đều đường cao đồng thời là đường phân giác)
=> ^ACD=^BCD (1)
CD//BI => ^BCD=^CBI (góc so le trong) (2)
và ^ACD=^BIC (Góc đồng vị) (3)
Từ (1) (2) (3) => ^CBI=^BIC => tg BCI cân tại C (có 2 góc ở đáy bằng nhau)
+ Ta có CD vuông góc AB
CD//BI
=> BI vuông góc AB => tg ABI vuông tại B
Cho tam giác đều ABC . Hai đường cao BE và CD cắt nhau tại H. Chứng minh rằng
a) tam giác BCD= tam giác CBE
b) tam giác BHD= tam giác CHE
c) AH là đường trung trực của BC
d) Từ B kẻ đường thẳng song song với DC cắt AC tại I. Chứng minh: tam giác BCI cân và tam giác ABI vuông
d) △ABC đều có: CD là đường cao \(\Rightarrow\)CD cũng là phân giác.
\(\Rightarrow\widehat{BCD}=\widehat{ACD}\).
Mà \(\left\{{}\begin{matrix}\widehat{BCD}=\widehat{IBC}\\\widehat{ACD}=\widehat{CIB}\end{matrix}\right.\) (DC//BI)
\(\Rightarrow\widehat{IBC}=\widehat{CIB}\)
\(\Rightarrow\)△BCI cân tại C.
mình mới nghĩ được đến đây, rất xin lỗi bạn, vẫn còn ý đầu của câu d, nếu mình nghĩ ra sẽ làm giúp bạn nha
Cho tam giác ABC vuông ở A . Vẽ đường cao AH . Trung tuyến AM . Kẻ đường phân giác góc A cắt đường trung trực cạnh BC tại D . Từ D kẻ DE vuông góc với AB tại D , DF vuông góc với AC tại F
a) CM : AD là phân giác góc HAM
b) CM : 3 điểm E , M , F thẳng hàng
c) CM : Tam giác BDC vuông cân
Cho tam giác ABC vuông tại A, đường cao AH. Cho AM là đường trung tuyến. Biết BH = 9cm, CH = 16cm.
a) Tính diện tích tam giác AHM, chu vi và diện tích tam giác ABC.
b) Gọi Q, P lần lượt là trung điểm của BH, AH. Chứng minh: Tam giác ABQ đồng dạng với CAP
c)Kẻ MI vuông góc với AC. Đường trung trực của BC cắt AB tại N, AC tại D. Gọi O là trung điểm của MI; DO cắt BI tại K. Chứng minh:Tam giác ABI đồng dạng với IDO.
Cho tam giác ABC vuông tại A, đường cao AH. Cho AM là đường trung tuyến. Biết BH = 9cm, CH = 16cm.
a) Tính diện tích tam giác AHM, chu vi và diện tích tam giác ABC.
b) Gọi Q, P lần lượt là trung điểm của BH, AH. Chứng minh: Tam giác ABQ đồng dạng với CAP
c)Kẻ MI vuông góc với AC. Đường trung trực của BC cắt AB tại N, AC tại D. Gọi O là trung điểm của MI; DO cắt BI tại K. Chứng minh:Tam giác ABI đồng dạng với IDO.
Bài làm
b) Xét tam giác HAP có:
Q là trung điểm BH
P là trung điểm AH
=> QP là đường trung bình
=> QP // AB
=> \(\widehat{HQP}=\widehat{QPA}\)
Xét tam giác HQP và tam giác ABC có:
\(\widehat{HQP}=\widehat{QPA}\)
\(\widehat{PHQ}=\widehat{BAC}\left(=90^0\right)\)
=> Tam giác HQP ~ Tam giác ABC ( g - g )
=> \(\frac{HQ}{AB}=\frac{HP}{AC}\Rightarrow\frac{AC}{AB}=\frac{HP}{HQ}\Rightarrow\frac{AB}{AC}=\frac{HQ}{HP}\) (1)
Xét tam giác HAB có:
QP // AB
=> Tam giác HQP ~ HAB
=> \(\frac{HQ}{QB}=\frac{HP}{PA}\Rightarrow\frac{HQ}{HP}=\frac{QB}{PA}\) (2)
Từ (1) và (2) => \(\frac{AB}{AC}=\frac{QB}{PA}\)
Xét tam giác AHC vuông ở H có:
\(\widehat{PAC}+\widehat{BCA}=90^0\)(3)
Xét tam giác ABC vuông ở A có:
\(\widehat{CBA}+\widehat{BCA}=90^0\) (4)
Từ (3) và (4) => \(\widehat{PAC}=\widehat{CBA}\)
Xét tam giác ABQ và tam giác CAP có:
\(\frac{AB}{AC}=\frac{QB}{PA}\)
\(\widehat{PAC}=\widehat{CBA}\)
=> Tam giác ABQ ~ Tam giác CAP ( c-g-c ) ( đpcm )
Bài làm
a) Vì AM là trung tuyến
=> M là trung điểm BC
=> BM = MC = BC/2 = ( BH + HC )/2 = ( 9 + 16 )/2 = 12,5 ( cm )
Ta có: BH + HM + MC = BC
=> BH + HM + MC = BH + HC
hay 9 + HM + 12,5 = 9 + 16
=> HM = 9 + 16 - 9 - 12,5
=> HM = 3,5 ( cm )
Vì tam giác ABC là tam giác vuông ở A
Mà AM trung tuyến
=> AM = MC = BM = 12,5 ( cm )
Xét tam giác AHM vuông ở H có:
Theo định lí Pytago có:
AH2 = AM2 - HM2
hay AH2 = 12,52 - 3,52
=> AH2 = 156,25 - 12,25
=> AH2 = 144
=> AH = 12 ( cm )
SABC = 1/2 . AH . HM = 1/2 . 12 . 3,5 = 21 ( cm2 )
Xét tam giác AHB vuông ở H có:
Theo định lí Py-ta-go có:
AB2 = BH2 + AH2
=> AB2 = 92 + 212
=> AB2 = 81 + 441
=> AB2 = 522
=> AB \(\approx\)22,8 ( cm )
Xét tam giác AHC vuông ở H có:
Theo định lí Pytago có:
AC2 = AH2 + HC2
=> AC2 = AH2 + ( HM + MC )2
hay AC2 = 212 + ( 3,5 + 12,5 )2
=> AC2 = 441 + 256
=> AC2 = 697
=> AC \(\approx\)26,4 ( cm )
Chu vi tam giác ABC là: AB + AC + BC = 22,8 + 26,4 + 25 = 74,2 ( cm )
SABC = 1/2 . AH . BC = 1/2 . 21 . 25 = 262,5 ( cm2 )
Bài 1: Cho tam giác ABC vuông tại A ( AB>AC), AM là đường trung tuyến, kẻ đường thẳng vuông góc với AM tại M lần lượt cắt AB tại E, cắt AC tại F.
a) chứng minh: tam giác MBE đồng dạng tam giác MFC
b) Chứng minh: AE.AB=AF.AC
c) Đường cao AH của tam giác ABC cắt EF tại I. Chứng minh: \(\dfrac{S_{ABC}}{S_{AEF}}=\left(\dfrac{AM}{AI}\right)^2\)
Bài 2: Cho E= x2-2x+2022
a) Chúng minh: E>0 với mọi x
b) Tìm GTLN của: A=\(\dfrac{2020}{x^2-2x+2022}\)