\(\dfrac{\sqrt[2]{9}}{3}\)
\(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{3}{\sqrt{x}+2}+\dfrac{12}{x-4}\)
\(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{\sqrt{x}-21}{9-x}\dfrac{1}{\sqrt{x}+3}\)
\(C=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(D=\dfrac{1}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}+\dfrac{2\sqrt{x}+12}{x-9}\)
\(N=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{6}{x-1}\)
\(M=\dfrac{3}{\sqrt{x}-3}+\dfrac{2}{\sqrt{x}+3}+\dfrac{x-5\sqrt{x}-3}{x-9}\)
a: Ta có: \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{3}{\sqrt{x}+2}+\dfrac{12}{x-4}\)
\(=\dfrac{x+4\sqrt{x}+4-3\sqrt{x}+6+12}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+\sqrt{x}+22}{x-4}\)
d: Ta có: \(D=\dfrac{1}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}+\dfrac{2\sqrt{x}-12}{x-9}\)
\(=\dfrac{\sqrt{x}-3+x+3\sqrt{x}+2\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+6\sqrt{x}-15}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
A=\(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{3}{\sqrt{x}+2}+\dfrac{12}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}A=\dfrac{\sqrt{x}+2.\left(\sqrt{x}+2\right)-3.\left(\sqrt{x}-2\right)+12}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right)}A=\dfrac{\sqrt{x}+2\sqrt{x}+4-3\sqrt{x}+6+12}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right)}A=\dfrac{22}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right)}\)
a) \(\sqrt{4x^2-9}=2\sqrt{x+3}\)
b) \(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c) \(\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27\sqrt{\dfrac{x-1}{81}}=4\)
d)\(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)
\(ĐK:x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)
\(\Leftrightarrow4x^2-9=4x+12\)
\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)
\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(ĐK:x\ge5\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)
ĐK:x>=1
\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)
\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)
\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(ĐK:x\ge3\)
\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)
\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}=0\) (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)
CMR: \(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\dfrac{1}{9}}-\sqrt[3]{\dfrac{2}{9}}+\sqrt[3]{\dfrac{4}{9}}\)
9) \(\sqrt{20}\) + 2\(\sqrt{45}\) + \(\sqrt{125}\) - 3\(\sqrt{80}\)
10) \(\sqrt{75}\) - \(\sqrt{5\dfrac{1}{3}}\) + \(\dfrac{9}{2}\) \(\sqrt{2\dfrac{2}{3}}\) + 2\(\sqrt{27}\)
9.
\(\sqrt{20}+2\sqrt{45}+\sqrt{125}-3\sqrt{80}\)
\(=2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}\)
\(=-\sqrt{5}\)
10.
\(\sqrt{75}-\sqrt{5\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2\dfrac{2}{3}}+2\sqrt{27}\)
\(=5\sqrt{3}-\sqrt{5+\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2+\dfrac{2}{3}}+6\sqrt{3}\)
\(=11\sqrt{3}-\sqrt{\dfrac{16}{3}}+\dfrac{9}{2}\sqrt{\dfrac{8}{3}}\)
\(=11\sqrt{3}-\dfrac{4\sqrt{3}}{3}+3\sqrt{6}\)
\(=\dfrac{29\sqrt{3}}{3}+3\sqrt{6}\)
\(\sqrt{20}+2\sqrt{45}+\sqrt{125}-3\sqrt{80}\\ =2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}=\sqrt{5}\)
\(\sqrt{75}-\sqrt{5\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2\dfrac{2}{3}}+2\sqrt{27}\\ =5\sqrt{3}-\dfrac{4\sqrt{3}}{3}+3\sqrt{6}+6\sqrt{3}\\ =\dfrac{15\sqrt{3}-4\sqrt{3}+6\sqrt{6}+18\sqrt{3}}{3}\\ =\dfrac{29\sqrt{3}+6\sqrt{6}}{3}\)
A=\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}\)-\(\dfrac{1}{\sqrt{3}-\sqrt{2}}\)+\(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\)
B=\(\dfrac{\sqrt{x}}{\sqrt{x}+3}\)+\(\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)-\(\dfrac{3x+9}{x-9}\)với x≥0;x≠9
a. Rút gọn biểu thức A và B
b. Tìm x để một phần ba giá trị của A bằng giá trị của biểu thức B
a) Ta có: \(A=\dfrac{3+2\sqrt{3}}{\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\)
\(=2+\sqrt{3}-\sqrt{3}-\sqrt{2}+\sqrt{2}\)
=2
Ta có: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3}{\sqrt{x}+3}\)
Cmr:
\(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\dfrac{1}{9}}-\sqrt[3]{\dfrac{2}{9}}+\sqrt[3]{\dfrac{4}{9}}\)
Đặt \(\sqrt[3]{2}=x\Rightarrow2=x^3\Rightarrow x^3+1=3;x^3-1=1\)
\(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{x-1}=\sqrt[3]{\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}}=\sqrt[3]{\dfrac{x^3-1}{x^2+x+1}}\)
\(=\sqrt[3]{\dfrac{1}{x^2+x+1}}=\sqrt[3]{\dfrac{1}{x^2+x+\dfrac{1}{3}\left(x^3+1\right)}}\)
\(=\sqrt[3]{\dfrac{3}{x^3+3x^2+3x+1}}=\sqrt[3]{\dfrac{27}{9\left(x+1\right)^3}}=\dfrac{1}{\sqrt[3]{9}}.\dfrac{3}{x+1}\)
\(=\dfrac{1}{\sqrt[3]{9}}\left(\dfrac{x^3+1}{x+1}\right)=\dfrac{1}{\sqrt[3]{9}}\left(1-x+x^2\right)=\dfrac{1}{\sqrt[3]{9}}\left(1-\sqrt[3]{2}+\sqrt[3]{4}\right)\)
\(=\sqrt[3]{\dfrac{1}{9}}-\sqrt[3]{\dfrac{2}{9}}+\sqrt[3]{\dfrac{4}{9}}\) (đpcm)
Cmr:
\(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\dfrac{1}{9}}-\sqrt[3]{\dfrac{2}{9}}+\sqrt[3]{\dfrac{4}{9}}\)
Chứng minh đẳng thức :\(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\dfrac{1}{9}}-\sqrt[3]{\dfrac{2}{9}}+\sqrt[3]{\dfrac{4}{9}}\)
\(B=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{x+9\sqrt{x}}{9-x};\left(x\ge0;x\ne9;x\ne16\right)\)
\(B=\dfrac{3}{\sqrt{x}-3}+\dfrac{2}{\sqrt{x}+3}+\dfrac{x-5\sqrt{x}-3}{x-9}\)
\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1};\left(x>0;x\ne1\right)\)
1.
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{x+9\sqrt{x}}{9-x}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-15\sqrt{x}}{x-9}\)
2.
\(B=\dfrac{3}{\sqrt{x}-3}+\dfrac{2}{\sqrt{x}+3}+\dfrac{x-5\sqrt{x}-3}{x-9}\)
\(=\dfrac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{x-5\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3\sqrt{x}+9+2\sqrt{x}-6+x-5\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x}{x-9}\)
3.
\(C=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{1}{\sqrt{x}-1}\)
thực hiện phép tính:
A=\(\sqrt{9}-3\sqrt{\dfrac{50}{9}}+3\sqrt{8}-\sqrt[3]{27}\)
B=\(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}-1}-6\sqrt{\dfrac{16}{3}}\)
A: \(A=\sqrt{9}-3\sqrt{\dfrac{50}{9}}+3\sqrt{8}-\sqrt[3]{27}\)
\(=3-3\cdot\dfrac{5\sqrt{2}}{3}+6\sqrt{2}-3\)
\(=-5\sqrt{2}+6\sqrt{2}=\sqrt{2}\)
b: \(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}-1}-6\cdot\sqrt{\dfrac{16}{3}}\)
\(=\left|2-\sqrt{3}\right|+\dfrac{2\left(\sqrt{3}+1\right)}{3-1}-6\cdot\dfrac{4}{\sqrt{3}}\)
\(=2-\sqrt{3}+\sqrt{3}+1-4\sqrt{3}\)
\(=3-4\sqrt{3}\)
\(A=\sqrt{9}-3\sqrt{\dfrac{50}{9}}+3\sqrt{8}-\sqrt[3]{27}\\ =3-3\cdot\dfrac{1}{3}\sqrt{25\cdot2}+3\sqrt{4\cdot2}-3\\ =3-1\cdot5\sqrt{2}+3\cdot2\sqrt{2}-3\\ =3-5\sqrt{2}+6\sqrt{2}-3\\ =\sqrt{2}\)
\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}-1}-6\sqrt{\dfrac{16}{3}}\\ =\left|2-\sqrt{3}\right|+\dfrac{2\left(\sqrt{3}+1\right)}{3-1}-6\cdot\dfrac{4\sqrt{3}}{3}\\ =2-\sqrt{3}+\sqrt{3}+1-8\sqrt{3}\\ =3-8\sqrt{3}\)