\(\left(3x+1\right)^2=25\)
\(\left(3x-1\right)^3=25.\left(3x-1\right)\)
\(\left(3x-14\right)^3=2^5.5^2+200\)
\(\left(3x-1\right)^3=25\left(3x-1\right)\\ \Leftrightarrow\left(3x-1\right)^2=25\\ \Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\\ \left(3x-14\right)^3=2^5\cdot5^2+200\\ \Leftrightarrow\left(3x-14\right)^3=1000=10^3\\ \Leftrightarrow3x-14=10\Leftrightarrow x=8\)
\(\left(3x-1\right)^3=25\left(3x-1\right)\)
\(\Rightarrow\left(3x-1\right)\left(9x^2-6x+1-25\right)=0\)
\(\Rightarrow\left(3x-1\right)\left(9x^2-6x-24\right)=0\)
\(\Rightarrow3\left(3x-1\right)\left(x-2\right)\left(3x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
\(\left(3x-14\right)^3=2^5.5^2+200\)
\(\Rightarrow\left(3x-14\right)^3=1000\)
\(\Rightarrow3x-14=10\Rightarrow3x=24\Rightarrow x=8\)
Phân tích đa thức \(18x^3-\dfrac{8}{25}x\) thành nhân tử
a. \(\dfrac{2}{25}x\left(9x^2-4\right)=\dfrac{2}{25}x\left(3x-2\right)\left(3x+2\right)\)
b. \(2x\left(9x^2-\dfrac{4}{25}\right)=2x\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)\)
Cách phân tích nào đúng, a hay b. Giải thích vì sao?
Tìm x liên quan đến lũy thừa:
1, \(\left(3x-\dfrac{1}{5}\right)^2=\left(\dfrac{-3}{25}\right)^2\)
2, \(\left(2x-\dfrac{1}{3}\right)^2=\left(\dfrac{-2}{9}\right)^2\)
3, \(\left(\dfrac{1}{3}-x\right)^2=\dfrac{9}{25}\)
4, \(\left(5-x\right)^2=25\)
1: \(\left(3x-\dfrac{1}{5}\right)^2=\left(-\dfrac{3}{25}\right)^2\)
=>3x-1/5=3/25 hoặc 3x-1/5=-3/25
=>3x=8/25 hoặc 3x=2/25
=>x=8/75 hoặc x=2/75
2: \(\left(2x-\dfrac{1}{3}\right)^2=\left(-\dfrac{2}{9}\right)^2\)
=>2x-1/3=2/9 hoặc 2x-1/3=-2/9
=>2x=5/9 hoặc 2x=1/9
=>x=5/18 hoặc x=1/18
1.Rút gọn
a,\(\left(3x-5\right)\left(9x^2+15x+25\right)\)
b,\(\left(2x+7\right)\left(x^2-14x+49\right)-2x\left(2x-1\right)\left(2x+1\right)\)
c,\(\left(4x-7\right)\left(16x^2+28x+49\right)\)\(\left(3x+1\right)\left(9x^2-3x+1\right)-9x\left(3x^2-1\right)\)
d,
a) \(\left(3x-5\right)\left(9x^2+15x+25\right)\)
\(=\left(3x\right)^3-5^3\)
\(=27x^3-125\)
b) \(\left(2x+7\right)\left(x^2-14x+49\right)-2x\left(2x-1\right)\left(2x+1\right)\)
\(=2x^3-28x^2+98x+7x^2-98x+343-2x\left(4x^2-1\right)\)
\(=2x^3-28x^2+7x^2+343-8x^3+2x\)
\(=-6x^3-21x^2+343+2x\)
c) \(\left(4x-7\right)\left(16x^2+28x+49\right)\left(3x+1\right)\left(9x^2-3x+1\right)-9x\left(3x^2-1\right)\)
\(=\left(64x^3-343\right)\left(3x+1\right)\left(9x^2-3x+1\right)-27x^3+9x\)
\(=\left(6x^3-343\right)\left(27x^3+1\right)-27x^3+9x\)
\(=1728x^6+64x^3-9261x^3-343-27x^3+9x\)
\(=1728x^6-9224x^3-343+9x\)
Bài 1: Rút gọn biểu thức
a)\(\left(4x-1\right)^2+\left(3x+1\right)^2+2.\left(4x-1\right).\left(3x+1\right)\)
b)\(\left(x^2+2\right).\left(x-5\right)+\left(x-5\right).\left(x^2+5x+25\right)\)
Lời giải:
a)
\((4x-1)^2+(3x+1)^2+2(4x-1)(3x+1)\)
\(=(4x-1)^2+2(4x-1)(3x+1)+(3x+1)^2\)
\(=[(4x-1)+(3x+1)]^2=(7x)^2=49x^2\)
b)
\((x^2+2)(x-5)+(x-5)(x^2+5x+25)\)
\(=(x-5)[(x^2+2)+(x^2+5x+25)]\)
\(=(x-5)(2x^2+5x+27)\)
Bài 1. Rút gọn phân thức
\(\dfrac{\left(3x+3\right)\left(3x-5\right)}{25-9x^2}\)
giúp mik nhanh nha
\(=\dfrac{3\left(x+1\right)\left(3x-5\right)}{-\left(3x-5\right)\left(3x+5\right)}=\dfrac{-3\left(x+1\right)}{3x+5}\)
Bài 1: Thực hiện phép tính:
\(\sqrt{25}\)x\(\left(0,4-1\dfrac{1}{12}\right)\):\(\left[\left(-2\right)^3x\dfrac{11}{8}\right]\)
\(=5\cdot\left(\dfrac{2}{5}-\dfrac{13}{12}\right):\left[-8\cdot\dfrac{11}{8}\right]\)
\(=5\cdot\dfrac{-41}{60}\cdot\dfrac{-1}{11}=\dfrac{205}{60\cdot11}=\dfrac{41}{132}\)
= 5. (0,4 - 13/12) : -11
= 5. -41/60 : -11
=-41/132
tìm x biết
a.\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)6\left(x+1\right)^2=49\)49
b.\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=25\)
c.\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\left(1\right)\sqrt{x^2-9}-2\sqrt{x-3}=0\)
\(\left(2\right)\sqrt{4x+1}-\sqrt{3x-4}=1\)
\(\left(3\right)\sqrt{x^2-10x+25}=5-x\)
\(\left(4\right)\sqrt{x^2-8x+16}=x+2\)
1:
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)
=>x-3=0 hoặc \(\sqrt{x+3}=2\)
=>x=3 hoặc x+3=4
=>x=1(loại) hoặc x=3(nhận)
2:
\(\Leftrightarrow\left(\sqrt{4x+1}-\sqrt{3x-4}\right)^2=1\)
=>\(4x-1+3x-4-2\sqrt{\left(4x+1\right)\left(3x-4\right)}=1\)
=>\(\sqrt{4\left(4x+1\right)\left(3x-4\right)}=7x-6\)
=>4(12x^2-16x+3x-4)=(7x-6)^2
=>49x^2-84x+36=48x^2-52x-16
=>-84x+36=-52x-16
=>-32x=-52
=>x=13/8
3: =>\(\sqrt{\left(x-5\right)^2}=5-x\)
=>|x-5|=5-x
=>x-5<=0
=>x<=5
4: \(\Leftrightarrow\left|x-4\right|=x+2\)
=>\(\left\{{}\begin{matrix}x>=-2\\\left(x-4\right)^2=\left(x+2\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\x^2-8x+16=x^2+4x+4\end{matrix}\right.\)
=>x>=-2 và -8x+16=4x+4
=>x=1