Lời giải:
a)
\((4x-1)^2+(3x+1)^2+2(4x-1)(3x+1)\)
\(=(4x-1)^2+2(4x-1)(3x+1)+(3x+1)^2\)
\(=[(4x-1)+(3x+1)]^2=(7x)^2=49x^2\)
b)
\((x^2+2)(x-5)+(x-5)(x^2+5x+25)\)
\(=(x-5)[(x^2+2)+(x^2+5x+25)]\)
\(=(x-5)(2x^2+5x+27)\)
Lời giải:
a)
\((4x-1)^2+(3x+1)^2+2(4x-1)(3x+1)\)
\(=(4x-1)^2+2(4x-1)(3x+1)+(3x+1)^2\)
\(=[(4x-1)+(3x+1)]^2=(7x)^2=49x^2\)
b)
\((x^2+2)(x-5)+(x-5)(x^2+5x+25)\)
\(=(x-5)[(x^2+2)+(x^2+5x+25)]\)
\(=(x-5)(2x^2+5x+27)\)
thực hiện phép tính
a.\(5x^2-3x\left(x+2\right)\)
b.\(3x\left(x-5\right)-5x\left(x+7\right)\)
c.\(3x^2y.\left(2x^2-y\right)-2x^2.\left(2x^2y-y^2\right)\)
d.\(3x^2.\left(2y-1\right)-\left[2x^2.\left(5y-3\right)-2x.\left(x-1\right)\right]\)
e.\(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)
f.\(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)
chứng minh rằng giá trị của các biểu thức sau ko phụ thuộc vào biến
a, \(x^2-2x-\left(3x^2-5x+4\right)+\left(2x^2-3x+7\right)\)
b,\(\left(2x^3-4x^2+x-1\right)-\left(5-x^2+2x^3\right)+3x^2-x\)
c, \(\left(1-x-\dfrac{3}{5}x^2\right)-\left(x^4-2x-6\right)+0,6x^2+x^4-x\)
Tính giá trị lớn nhất; nhỏ nhất của các biểu thức sau:
a,B=\(1,5+\left|2-x\right|\) ; b,M=\(-5\left|1-4x\right|-1\) ; c,\(B=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|\) ;
d,D=\(\left|x-1\right|+\left|x-4\right|\) ; e,B=\(\left|1993-x\right|+\left|1994-x\right|\) ; g,C=\(x^2+\left|y-2\right|-5\) ;
h,A=\(3,7-\left|4,3-x\right|\) ; i,B=\(-\left|3x+8,4\right|-14,2\) ; k,C=\(\left|4x-3\right|+\left|5y+7,5\right|+17,5\) ;
l,M=\(\left|x-2002\right|+\left|x-2001\right|\)
Tìm x, biết:
1) \(\left|4x\right|=3x+12\) 7) \(\left|5x\right|-3x-2=0\)
2) \(\left|2x+4\right|=2x-5\) 8) \(x-5x+\left|-2x\right|-3=0\)
3)\(\left|x+3\right|=3x-1\) 9) \(\left|3-x\right|+x^2-\left(4+x\right)x=0\)
4) \(\left|x-4\right|+3x=5\)
5)\(\left|x-5\right|=3x\)
6) \(\left|x+2\right|=2x-10\)
Tìm x
\(\left(2x+3\right)^2-\left(5x-4\right)\left(5x+4\right)=\left(x+5\right)^2-\left(3x-1\right)\left(7x+2\right)-\left(x^2-1+1\right)\)
Rút gọn biểu thức : \(2\left|x-3\right|-\left|4x-1\right|\)
1. Tìm x, biết:
a) \(\left|x-1\right|+\left|x-4\right|=5\)
b) \(3\left|x+4\right|+\left|x-5\right|=10\)
c) \(\left|x+3\right|+\left|2x+1\right|=3x-6-\left|x+1\right|\)
d) \(\left|x\right|-\left|2x+3\right|=\left|x-1\right|\)
e) \(\left|x+1\right|+\left|2x-3\right|=\left|3x-2\right|\)
f) \(\left|x+2\right|+\left|x+\dfrac{3}{5}\right|=10x-\left|x+\dfrac{1}{2}\right|\)
g) \(\left|x+3\right|+\left|x+1\right|=3x\)
h) \(\left|x-1\right|+\left|x-3\right|< x+1\)
i) \(\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+...+\left|x+\dfrac{1}{97.99}\right|=50x\)
j) \(\left|3x-5\right|+\left|3x+1\right|=6\)
(Ai làm đc bài nào thì làm nha)
Rút gọn biểu thức:
a, \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(2x-1\right)\)
\(b,\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x-1\right)\left(x+1\right)\)
Tìm \(x,\) biết:
a) \(4\left|3x-1\right|+\left|x\right|-2\left|x-5\right|+7\left|x-3\right|=12\)
b) \(3\left|x+4\right|-\left|2x+1\right|-5\left|x+3\right|+\left|x+9\right|=5\)
c) \( \left|2\frac{1}{5}-x\right|+\left|x-\frac{1}{5}\right|+8\frac{1}{5}=1,2\)
d) \(2\left|x+3\frac{1}{2}\right|+\left|x\right|-3\frac{1}{2}=\left|2\frac{1}{5}-x\right|\)