Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
adasdas
Xem chi tiết
Cao Thanh Nga
Xem chi tiết
Nguyễn Tất Đạt
14 tháng 7 2018 lúc 21:28

A B C H M I K G E

a) Giao điểm của AH và BC là E. Dễ thấy: \(\Delta\)BHM = \(\Delta\)CKM (c.g.c) => ^HBM = ^KCM

=> ^HBC = ^KCB. Do H đối xứng với I qua BC => ^HBC = ^IBC => ^KCB = ^IBC (1)

Xét \(\Delta\)HIK: E là trung điểm IH; M là trung điểm của HK => EK là đường trung bình \(\Delta\)HIK

=> EM // IK hay IK // BC => Tứ giác BIKC là hình thang (2)

Từ (1) & (2) => Tứ giác BIKC là hình thang cân (đpcm).

b) Dễ c/m tứ giác BHCK là hình bình hành (Do có tâm đối xứng) => HC // BK

Hay HC // GK => Tứ giác GHCK là hình thang 

Để tứ giác GHCK là hình thang cân thì ^GHC = ^KCH

<=> ^HAC + ^HCA = ^HCB + ^HBC <=> ^HCA = ^HCB ( Vì ^HAC = ^HBC, cùng phụ ^ACB)

<=> CH là phân giác ^ACB. Mà CH cũng là đường cao của \(\Delta\)ABC => \(\Delta\)ABC cân tại C

Vậy khi \(\Delta\)ABC cân tại C thì tứ giác GHCK là hình thang cân.

Ngo Duy Tin
Xem chi tiết
22 - Gia Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 1 2022 lúc 17:10

a: Xét tứ giác AHCE có 

I là trung điểm của AC
I là trung điểm của HE

Do đó: AHCE là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCE là hình chữ nhật

c: Để AHCE là hình vuông thì CA là tia phân giác của góc ECH và EC=EH

=>\(\widehat{ACB}=45^0\)

maithuyentk
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 4 2018 lúc 7:18

Trần Lê Gia Bảo
Xem chi tiết
Bảo Châu Trần
Xem chi tiết
Nguyễn Thị Huyền Chi
Xem chi tiết