Cho tam giác ABC có góc C lớn hơn góc B kẻ AH vuông góc với BC so sánh các độ dài HB và HC
Cho tam giác ABC có góc A lớn hơn góc B, góc C lớn hơn góc B, kẻ AH vuông góc với BC, so sánh độ dài HB và HC.
Tam giác ABC có góc C > góc B. Kẻ AH vuông góc với BC (H thuộc BC) . So sánh các độ dài HB va HC.
ban vao cau hoi tuong tu nhe
tic mjnh cai nhe cac ban oi
Câu 1: Cho △ABC có góc B = 50 độ.
a, So sánh các cạnh của △ABC
b, Kẻ AH vuông góc với BC tại H. So sánh độ dài cạnh HB và HC
Câu 2: Cho tam giác ABC nhọn, điểm D nằm giữa B và C sao cho AD không vuông góc với BC. Kẻ BH và CK vuông góc với đường thẳng AD tại H và K
a, So sánh BH + CK và AB + AC
b, So sánh BH + CK và BC
Nếu△ABC vuông tại B và D là trung điểm BC thì so sánh AH + Ak với 2. AB
a: BH<AB
CK<AC
=>BH+CK<AB+AC
b: BH<BD
CK<CD
=>BH+CD<BD+CD=BC
Bài 7: Cho tam giác AB cân tại A, kẻ AH vuông góc với BC tại H. Lấy điểm D, E lần lượt thuộc các đoạn thẳng HB và HC sao cho BD=CE. So sánh độn dài đoạn thẳng AD, AE.
Bài 9: Cho tam giác ABC vuông tại A và góc B lớn hơn góc C. Kẻ AH vuông góc với BC tại H. Trên tia BH lấy điểm D sao chp H là trung điểm của BD. Gọi E là hình chiếu của D trên đường thẳng AC, K là hình chiếu của C trên đường thẳng AD. Chứng minh rằng: a) Điểm D nằm trên đoạn thẳng HC.
b) DE=DK.
1:
Xét ΔABD và ΔACE có
AB=AC
góc B=góc C
BD=CE
=>ΔABD=ΔACE
=>AD=AE
2:
a: H là trung điểm của DB
=>D thuộc tia đối của tia HB
=>D thuộc HC
b: góc KCD=góc DAH
góc DAH=góc CED
=>góc KCD=góc CED
Xét ΔCED vuông tại E và ΔCKD vuông tại K có
CD chung
góc ECD=góc KCD
=>ΔCED=ΔCKD
=>DE=DK
Cho tam giác ABC có góc B < góc C. Kẻ Ah vuông góc với BC ( H thuộc BC ) . So sánh độ dài HB và HC
GIÚP MÌNH VỚI MAI ĐI HỌC RỒi
Xét tam giác ABC có góc B < góc C
=> AC < AB ( theo quan hệ cạnh và góc đối diện trong 1 tam giác )
=> HC < HB ( theo quan hệ đường xiên và hình chiếu )
2.cho tam giác ABC có AB=AC=5CM, BC=8cm . Kẻ AH vuông góc với BC ( H thuộc BC ) a) chứng minh HB=HC và góc BAH = góc CAH. b) tính độ dài đoạn thẳng AH . c) kẻ HD vuông góc với AB tại D , kẻ HE vuông góc với AC tại E . chứng minh rằng tam giác HDE là tam giác cân
so sánh hd và hc
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng
minh tam giác HDE cân.
d, So sánh HD và HC.
Xét tam giác ABH và tam giác ACH
AB=AC(GT)
^AHB=^AHC=90o
^ABH=^ACH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác ABH = tam giác ACH
=> HB=HC ( 2c tứ)
có HB+HC=BC
mà BC=8 cm
HB=HC
=> HB=HC=4cm
Xét tam giác ABH : ^H=90o
=> AB2+AH2+BH2(đ/lý pythagoras)
thay số ta có :
52=AH2+42
25-16=AH2
9=AH2
3=AH
c)Xét tam giác BDH và tam giác ECH
^BDH= ^ HEC =90o
BH=CH
^DBH=^ECH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác BDH = tam giác ECH
=> DH=EH
=> HDE CÂN TẠI H (Đ/N)
d) qua tia đối của DH ; kẻ HK sao cho HK= DH
CÓ : tam giác HCK có cạnh HK là cạnh lớn nhất ( cạnh huyền) => HK > HC
mà HD=HK
=> HD>HC
cho tam giác ABC cân có AB = AC = 5cm, BC =8cm. kẻ AH vuông góc với BC(H thuộc BC)
a, chứng minh HB=HC
b, tính độ dài AH
c, kẻ HD vuông góc với AB( D thuộc AB), kẻ HE vuông góc với AC( E thuộc AC). CHỨNG MINH TAM GIÁC HDE cân
d, so sánh HD và HC
a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:
AH: chung
AB=AC (gt)
=>Tam giác ABH=tam giác ACH (cạnh huyền-cạnh góc vuông)
=>HB=HC (2 cạnh tương ứng)
b)Vì HB=HC (câu a) => HB=HC=BC:2=8:2=4 (cm)
Xét tam giác ABH vuông tại H có: AB2 = AH2 + BH2 (định lý Py-ta-go)
52 = AH2 + 42
AH2 = 52 - 42 = 25-16=9
AH=\(\sqrt{9}=3\)
c) Vì tam giác ABH=tam giác ACH (câu a) => góc BAH=góc CAH (2 góc tương ứng)
Xét tam giác ADH vuông tại D và tam giác AEH vuông tại E có:
AH: chung
góc BAH=góc CAH (cmt)
=> Tam giác ADH=tam giác AEH (cạnh huyền-góc nhọn)
=>HD=HE (2 cạnh tương ứng)
=>tam giác DHE cân tại H
d) Tam giác EHC vuông tại E có HC là cạnh huyền =>HC là cạnh lớn nhất trong tam giác EHC hay HC>HE
Mà HE=HD (cmt) => HC>HD
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H
thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc
AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
a, xét tam giác AHB và tam giác AHC có : AH chung
AB = AC do tam giác ABC cân tại A (gt)
^AHB = ^AHC = 90
=> tam giác AHB = tam giác AHC (ch-cgv)
=> HB = HC (Đn)
b, HB = HC (câu a)
HB + HC = BC
BC = 8 cm (gt)
=> HB = 4
Xét tam giác AHB vuông tại H => AH^2 + HB^2 = AB^2 (Pytago)
AB = 5cm (gt)
=> AH^2 = 5^2 - 4^2
=> AH = 3 do AH > 0
c, xét tam giác BHD và tam giác CHE có : HB = HC (câu a)
^BDH = ^CEH = 90
^ABC = ^ACB do tam giác ABC cân tại A (gt)
=> tam giác BHD = tam giác CHE (ch-gn)
=> HD = HE (đn)
=> tam giác HDE cân tại H (đn)
b, tam giác BHD vuông tại D
=> DH < HB
HB = HC (câu a)
=> HD < HC