Biết A = x^2yz B = xy^2z C = xyz^z và x + y + z = 1
Chứng tỏ rằng A + B + C =xyz
Cho : A = x^2yz ; B = xy^2z ; C = xyz^z và x + y + z = 1
Hãy Chứng Tỏ : A + B + C = xyz
\(A+B+C=x^2yz+xy^2z+xyz^2=xyz\left(x+y+z\right)=xyz\)
\(A=x^2yz\) \(B=xy^2z\) \(C=xyz^2\)
\(A+B+C=x^2yz+xy^2z+xyz^2\)
\(=xyz\left(x+y+z\right)=xyz.1=xyz\)
biết A=x^2yz;B=xy^2z;C=xyz^2 và x+y+z=1
chứng tỏ rằng A+B+C=xyz
giúp mình với mình tích cho
help meeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
hộ caiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Biết A=\(x^2yz\) ;B=\(xy^2z\) ;C=\(xyz^2\) và x+y+z=1. Chứng tỏ rằng: A+B+C = xyz
Cho: A=x^2yz;B=xy^2z;C=xyz^2 va x+y+z=1
hay chung to:A+B+C=xyz
Ta có:
\(A=x^2yz=x.x.y.z=x.xyz\left(1\right)\)
\(B=xy^2z=x.y.y.z=y.xyz\left(2\right)\)
\(C=xyz^2=x.y.z.z=z.xyz\left(3\right)\)
Lấy (1)+(2)+(3),vế theo vế ta được:
\(A+B+C=x.xyz+y.xyz+z.xyz=\left(x+y+z\right).xyz=xyz\) (vì x+y+z=1)
Vậy A+B+C=xyz (đpcm)
Giúp tớ bài này với:
Biết A=x2yz; B=xy2z; C=xyz2 và xyz=1. Chứng tỏ rằng A+B+C=x+y+z
ta có A+B+C=x2yz+xy2z+xyz2
=x(xyz)+y(xyz)+z(xyz)
=x.1+y.1+z.1
=x+y+z(dpcm)
\(A=x^2yz=x.\left(xyz\right)=x.1=x\)
\(B=xy^2z=y.\left(xyz\right)=y.1=y\)
\(C=xyz^2=z.\left(xyz\right)=z.1=z\)
\(\Rightarrow A+B+C=x+y+z\)
Ta có \(A+B+C=x^2yz+xy^2z+xyz^2\)
\(A+B+C=\left(xyz\right)x+\left(xyz\right)y+\left(xyz\right)z\)
\(A+B+C=\left(x+y+z\right)xyz\)
Mà xyz=1 thay vào A+B+C ta có
\(A+B+C=x+y+z\) (đpcm)
Biết A=x2yz ; B=xy2z ; C=xyz2 và x+y+z=1
Chứng tỏ rằng A+B+C=xyz
Ta có:
\(A+B+C=x^2yz+xy^2z+xyz^2\\ A+B+C=xyz\left(x+y+z\right)\\ A+B+C=xyz\times1\\ A+B+C=xyz\)
Vậy A+B+C=xyz
Cho \(A=x^2yz\)\(;\)\(B=xy^2z;\) \(C=xyz^2\)và \(x+y+z=1\)
Chứng minh rằng : \(A+B+C=xyz\)
Admin giúp em nha
Ta có : \(A+B+C=x^2yz+xy^2z+xyz^2\)
\(=xyz\left(x+y+z\right)\)
\(=xyz\left(đpcm\right)\)
A + B + C = x2yz + xy2z + xyz2
suy ra : xyz ( x + y + z )
= xyz
Cho \(A=x^2yz\)\(;\)\(B=xy^2z;\) \(C=xyz^2\)và \(x+y+z=1\)
Chứng minh rằng : \(A+B+C=xyz\)
Admin giúp em nha
Theo đầu bài ta có:
\(\hept{\begin{cases}A=x^2yz=xyz\cdot x\\B=xy^2z=xyz\cdot y\\C=xyz^2=xyz\cdot z\end{cases}}\)
\(\Rightarrow A+B+C=xyz\cdot x+xyz\cdot y+xyz\cdot z\)
\(\Rightarrow A+B+C=xyz\left(x+y+z\right)\)
Mà \(x+y+z=1\Rightarrow A+B+C=xyz\) ( đpcm )
Ta có
\(\hept{\begin{cases}A=x^2yz=xyz.x\\B=xy^2z=xyz.y\\C=xyz^2=xyz.z\end{cases}}\)
\(\Rightarrow A+B+C=xyz.x+xyz.y+xyz.z\)
\(\Rightarrow A+B+C=xyz.\left(x+y+z\right)\)
Mà \(x+y+z=1\Rightarrow A+B+C=xyz\)
Cho A = x2yz ; B = xy2z ; C = xyz2 và x + y + z = 1. Chứng tỏ rằng : A + B + C = xyz
A=x^2yz
B=xy^2z
C=xyz^2
=>A+B+C=x^2yz+xy^2z+xyz^2=xyz(x+y+z)=xyz
\(A+B+C=xyz\)
\(VT=A+B+C\)
\(\Leftrightarrow VT=x^2yz+xy^2z+xyz^2\)
\(\Leftrightarrow VT=xyz\left(x+y+z\right)\)
\(\Leftrightarrow VT=xyz\)
\(\Rightarrow VT=VP\)
\(\Rightarrow A+B+C=xyz\left(dpcm\right)\)