GTNN của MA+MB trong hệ Oxy
Biết M thuộc Ox;A(11;-7);B(4;6)
cho a=(1;2), b=(3:-2), m thuộc ox. tìm gtnn của ma^2+mb^2
cho Ox là tia p/g của góc xOy ( xOy là góc nhọn) , lấy điểm M thuộc Ox, vẽ MA vuông góc Ox, MB vuông góc với Oy ( A thuộc Ox, B thuộc Oy)
a) CM : MA=MB
b) Tia OM cắt AB tại I. CM: OM là đường trung trực của đoạn thẳng AB.
a. Xét tam giác MOA và tam giác MOB có :
OM là cạnh chung
MOA = MOB ( vì ox là tia phân giác góc xOy )
OMA = OMB ( = 90 độ )
Nên tam giác MOA = tam giác MOB ( c - c - c )
b. Ta có tam giác MOA = tam giác MOB ( cmt )
Nên MA = MB
Do đó M là trung điểm của AB
Vì vậy OM là đường trung trực của AB
Nhớ tk mk nha !!!
Xét tam giác AMO vuông tại A và tam giác BMO vuông tại B có:
AOM = BOM (OM là tia phân giác của AOB)
OM chung
=> Tam giác AMO = Tam giác BMO (cạnh huyền - góc nhọn)
=> AMO = BMO (2 góc tương ứng) => MO là tia phân giác của AMB
AM = BM (2 cạnh tương ứng) => tam giác MAB cân tại A
có MO là tia phân giác của AMB (chứng minh trên)
=> MO là đường trung trực của AB
cho xÔy nhọn.goi m là 1 điểm thuộc tia phân giác của xÔy Kẻ MA vuông góc Ox
(a thuộc Ox); MB vuông góc Oy (B thuộc Oy)
a/CMR: MA=MB
b/MO cắt AB tại I. CMR: OM vuông góc AB tại A
c/Cho DM=10 cm, OA=x cm. Tính độ dài MA
d/Gọi E là giao điểm của MB và Ox.So sánh ME và MB
Cho góc xoy. Vẽ tia p/g Oz. Lấy điểm M thuộc miền trong góc xoy. Vẽ MA vuông góc Ox, MB vuông góc Oz.
Cmr: MA<MB
(Có cả hình và lời giải ạ)
Cần gấppp
vẽ góc xOy, Oz là tia phân giác của góc xOy, lấy điểm M bất kì thuộc Oz. Từ M kẻ MA vuông góc với Ox,MB vuông góc với Oy. Chứng minh MA=MB
Vì Oz là tia phân giác của góc xOy
=>góc AOM = góc BOM
VÌ MA\(\perp\)Ox =>góc MAO=90o
MB \(\perp\)Oy =>góc MBO=90o
Xét \(\Delta AOM\)và \(\Delta BOM\)có:
Góc MAO= Góc MBO(Cùng bằng 90o)
OM:cạnh chung
Góc AOM = góc BOM
=>\(\Delta AOM=\Delta BOM\left(Ch-gn\right)\)
=>MA=MB(các cạnh tương ứng)
2) Cho góc nhọn xOy Và M là một diểm thuộc tia phân giác của góc xOy . Kẻ MA vuông góc với Ox ( A thuộc Ox ) , MB vuông góc với Oy ( B thuộc Oy )
a ) chứng minh MA =MB
b ) Tam giác OAB là tam giác gì ? Vì sao ?
c ) Đường thẳng BM cắt Õ tại D đường thẳng AM cắt Oy tại E . cmr MD = ME
d ) Chứng minh OM vuông góc với DE
a. Xét △OAM và △OBM có:
\(\hat{OAM}=\hat{OBM}=90^o\)
\(OM\) chung
\(\hat{AOM}=\hat{BOM}\) (do M thuộc tia phân giác của \(\hat{xOy}\))
\(\Rightarrow\Delta OAM=\Delta OBM\left(c.h-g.n\right)\)
\(\Rightarrow MA=MB\) (đpcm).
b. Từ a. \(\Rightarrow OA=OB\)
⇒ Tam giác OAB cân tại O.
c. Xét △BME và △AMD có:
\(\hat{MBE}=\hat{MAD}=90^o\)
\(MA=MB\left(cmt\right)\)
\(\hat{AMD}=\hat{BME}\) (đối đỉnh)
\(\Rightarrow\Delta BME=\Delta AMD\left(g.n-c.g.v\right)\)
\(\Rightarrow MD=ME\left(đpcm\right)\)
d. Ta có: \(OA=OB\left(cmt\right)\), \(AD=DE\) (suy ra từ c.)
\(\Rightarrow OA+AD=OB+DE\)
\(\Rightarrow OD=OE\)
⇒ Tam giác ODE cân tại O.
Tam giác ODE cân tại O có OM là đường phân giác ⇒ OM cũng là đường cao.
\(\Rightarrow OM\perp DE\left(đpcm\right)\)
Trong không gian với hệ trục tọa độ Oxyz, cho A 4 ; 1 ; 5 , B 3 ; 0 ; 1 , C − 1 ; 2 ; 0 . Biết điểm M thuộc mặt phẳng Oxy sao cho tổng S = M A → . M B → + M B → . M C → + M C → . M A → đạt giá trị nhỏ nhất. Khi đó hoành độ của điểm M là
A. 2.
B. 1.
C. -2.
D. 1.
Cho góc xOy=90 độ ; phân giác Oz. Lấy điểm M thuộc tia Oz.
Kẻ MA ⊥ Ox; MB ⊥ Oy (A ∈ Ox; B ∈ Oy). Lấy K thuộc đoạn MA (K khác A, M).
Lấy H thuộc đoạn MB sao cho AKO=OKH.
Khi đó KOH
Cho góc xOy=90 độ ; phân giác Oz. Lấy điểm M thuộc tia Oz.
Kẻ MA ⊥ Ox; MB ⊥ Oy (A ∈ Ox; B ∈ Oy). Lấy K thuộc đoạn MA (K khác A, M).
Lấy H thuộc đoạn MB sao cho AKO=OKH.
Khi đó KOH