Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cfefwe
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2023 lúc 21:31

4:

(x+1)(y-2)=5

=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)

Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Miexưn
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 10 2021 lúc 15:49

\(\Leftrightarrow\left(x^2-1\right)-\left(xy+y\right)=1\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)-y\left(x+1\right)=1\)

\(\Leftrightarrow\left(x+1\right)\left(x-y-1\right)=1\)

x+1-11
x-y-1-11
x-20
y-2-2

Vậy \(\left(x;y\right)=\left(-2;-2\right);\left(0;-2\right)\)

rrrge
Xem chi tiết
Lê Tài Bảo Châu
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Trần Thanh Phương
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

cao nam anh
20 tháng 2 2021 lúc 17:33

LOADING...

Khách vãng lai đã xóa
Mai Tiến Đỗ
Xem chi tiết
Phạm Cao Sơn
Xem chi tiết
pham manh hung
Xem chi tiết
Người Dấu Tên
Xem chi tiết
võ hoàng ngọc hà
23 tháng 12 2015 lúc 9:09

x +y = xy 
<=>x(1-y)=y 
<=>x=y/(1-y)=1/(1-y) -1 

để x nguyên 
=>1/(1-y) nguyên 
=>1-y là ước của 1. 

=> 
+)1-y=1 
<=>y=0 và x=0 

+)1-y=-1 
<=>y=2 và x=2 

vậy hệ có 2 nghiệm nguyên: 
(0;0) và (2;2)