Cho đa thức P(x)= ax3 +bx +c. Biết P(-1)=0. khi đó a+b-c-1=
Cho đa thức f(x)= ax3 +bx+c
Xác định hệ số a,b,c biết f(0)=2; f(1)=0; f(-1)=6
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0^3+b\cdot0+c=2\\a+b+c=0\\-a-b+c=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=2\\a+b=-2\\-a-b=4\end{matrix}\right.\Leftrightarrow\left(a,b,c\right)\in\varnothing\)
Cho đa thức bậc hai P(x) = ax2 + bx + c. Trong đó: a,b và c là những số với a ≠ 0. Cho biết a + b + c = 0. Giải thích tại sao x = 1 là một nghiệm của P(x)
mk chỉ cần thay x bằng 1 vào đó rồi tính đc P bằng 0 thì suy ra x bằng 1 là nghiệm của đa thức P là xog
a) Thay x = 1 vào đa thức F(x) ta được: F(1) = a.12 + b.1 + c F(1) = a + b + c F(1) = 0. Ta có F(x) = 0 tại x = 1 nên x = 1 là một nghiệm của F(x)
ch đa thức bậc hai P(x)=ax2+bx+c. trong đó: a,b và c là những số với a khác 0.cho biết a+b+c=0 .giải thích tại são=1 là một nghiệm của P(x)
P(1)=a+b+c=0
=>x=1 là nghiệm của P(x)
Cho đa thức A(x) = ax2 + bx + c. Tìm a,b,c biết đa thức A(0) = 4 và đa thức A(x) có nghiệm bằng 1 và 2
Ta có: \(A\left(0\right)=a\cdot0^2+b\cdot0+c=4\Rightarrow c=4\)
Theo đề bài đa thức \(A\left(x\right)\) có nghiệm bằng 1 và 2 nên:
\(\Rightarrow\left\{{}\begin{matrix}a.1^2+b\cdot1+c=0\\a\cdot2^2+b\cdot2+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+4=0\\4a+2b+4=0\end{matrix}\right.\)
\(\Rightarrow a=2,b=-6,c=4\)
Vậy a=2,b=-6,c=4
Cho đa thức A(x) = ax2 + bx + c. Tìm a, b, c biết đa thức A(0) = 4 và đa thức A(x) có nghiệm bằng 1 và 2
Cho đa thức bậc 2 f(x)=ax^2+bx+c, biết a-b+c=0. Chứng tỏ rằng đa thức trên có nghiệm là -1
Ta có :
f(1) = a . (-1)2 + b . ( -1 ) + c = a - b + c = 0
Vậy đa thức trên có nghiệm là -1
Cho đa thức f(x) = ax2 + bx + c . Chứng tỏ rằng nếu a + b + c = 0 thì x = 1 là một nghiệm của đa thức đó .
Để x=1 là một nghiệm của f(x)
thì f(1)=a.12+b.1+c=0
=>a+b+c=0
Vậy .........
1) tìm nghiêm của đa thức:
a/ H(x)=x^2+x
b/Q(x)=|x|+1
2) tìm a khi biết đa thức
P(x)=ax^2+5x-3 có một nghiệm là 1/2
3) cho đa thức P(x)=a x^2 +bx+c
chứng minh rằng nếu đa thức có một nghiệm là -1 thì a-b+c=0
\(a)\) Ta có :
\(x^2+x=0\)
\(\Leftrightarrow\)\(x\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
Vậy nghiệm của đa thức \(H\left(x\right)=x^2+x\) là \(x=-1\) hoặc \(x=0\)
\(b)\) Ta có :
\(\left|x\right|\ge0\)
\(\Rightarrow\)\(\left|x\right|+1\ge0+1=1>0\)
Vậy đa thức \(Q\left(x\right)=\left|x\right|+1\) vô nghiệm ( hoặc không có nghiệm )
Chúc bạn học tốt ~
1/a/Cho x^2+x=0
x(x+1)=0
=>x=0 hoặc x+1=0
x=-1
Vậy nghiệm của H(x) là 0;-1
b/Ta có:\(\left|x\right|\ge0\Rightarrow\left|x\right|+1\ge1>0\)0
Vậy Q(x) vô nghiệm
2/P(x)=ax^2+5x-3
P(12)=a.12^2+5.12-3=0
a.144+60-3=0
144a=-57
a=-57:144
a=-19/48
1/ a/ H (x) = x2 + x
Khi H (x) = 0
=> \(x^2+x=0\)
=> \(x\left(x+1\right)=0\)
=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy đa thức H (x) có 2 nghiệm: x1 = 0; x2 = -1
b/ Q (x) = \(\left|x\right|+1\)
Ta có \(\left|x\right|\ge0\)với mọi gt của x
=> \(\left|x\right|+1>0\)với mọi gt của x
=> Q (x) vô nghiệm.
2/ Ta có P (x) có một nghiệm là \(\frac{1}{2}\)
=> \(P\left(\frac{1}{2}\right)=0\)
=> \(a\left(\frac{1}{2}\right)^2+5.\frac{1}{2}-3=0\)
=> \(\frac{1}{4}a+\frac{5}{2}-3=0\)
=> \(\frac{1}{4}a=3-\frac{5}{2}\)
=> \(\frac{1}{4}a=\frac{6-5}{2}\)
=> \(\frac{1}{4}a=\frac{1}{2}\)
=> \(a=\frac{1}{2}.4\)
=> a = 2
Vậy khi a = 2 thì đa thức P (x) có một nghiệm là \(\frac{1}{2}\).
3/ Ta có P (x) có một nghiệm là -1
=> \(P\left(-1\right)=0\)
=> \(a\left(-1\right)^2+b\left(-1\right)+c=0\)
=> \(a-b+c=0\)(đpcm)
Cho đa thức A=ax2+bx+c(a \(\ne\) 0) khi chia A cho x+1 và khi chia A x-1 đều có cùng số dư thì b=
số dư khi chia cho (x+1) là a+c-b
số dư khi chia cho x-1 là a+c+b
=> B=0