Giải PT: \(\sqrt{3x^2-30x+100}+\sqrt{8x^2-80x+216}=-2x^2+20x-41\)
giải pt :
1 ) \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
2 ) \(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
a)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)
\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)
Vậy pt có một nghiệm duy nhất là \(x=-1\)
b)
\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)
\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)
Lập bảng xét dấu ra nhé ~^o^~
giải phuong trình : \(\sqrt{3x^2-12x+21}+\sqrt{5x^2-20x+24}=-2x^2+8x-3\)
ĐKXĐ: \(\frac{4-\sqrt{10}}{2}\le x\le\frac{4+\sqrt{10}}{2}\)
Đặt : \(\sqrt{3x^2-12x+21}=a;\sqrt{5x^2-20x+24}=b\left(a,b>0\right)\Rightarrow a^2-b^2=-2x^2+8x-3\)
Khi đó pt trở thành:
\(a+b=a^2-b^2\)
\(\Rightarrow a=b\)
Theo cách đặt: \(\sqrt{3x^2-12x+21}=\sqrt{5x^2-20x+24}\)
\(\Leftrightarrow2x^2-8x+3=0\)
Đến đây bạn tự giải nha
giải phương trình : \(\sqrt{3x^2-12x+21}+\sqrt{5x^2-20x+24}=-2x^2+8x-3\)
Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào:
https://giaingay.com.vn/downapp.html
Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé
https://giaingay.com.vn/downapp.html
Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html
giải pt :
a, \(3x^2+3x+2=\left(x+6\right)\sqrt{x^2-2x-3}\)
b, \(\sqrt{x}+\sqrt{x+1}=\sqrt{x^2+x}+1\)
c, \(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}=\sqrt{x^2-9x+18}\)
c.
ĐKXĐ: \(\left[{}\begin{matrix}x\le-5\\x\ge6\end{matrix}\right.\)
\(\sqrt{\left(x-3\right)\left(x-5\right)}+\sqrt{\left(x-3\right)\left(x+5\right)}=\sqrt{\left(x-3\right)\left(x-6\right)}\)
- Với \(x\ge6\) , do \(x-3>0\) pt trở thành:
\(\sqrt{x-5}+\sqrt{x+5}=\sqrt{x-6}\)
Do \(\left\{{}\begin{matrix}\sqrt{x-5}>\sqrt{x-6}\\\sqrt{x+5}>0\end{matrix}\right.\) \(\Rightarrow\sqrt{x-5}+\sqrt{x+5}>\sqrt{x-6}\) pt vô nghiệm
- Với \(x\le-5\) pt tương đương:
\(\sqrt{\left(3-x\right)\left(5-x\right)}+\sqrt{\left(3-x\right)\left(-x-5\right)}=\sqrt{\left(3-x\right)\left(6-x\right)}\)
Do \(3-x>0\) pt trở thành:
\(\sqrt{5-x}+\sqrt{-x-5}=\sqrt{6-x}\)
\(\Leftrightarrow-2x+2\sqrt{x^2-25}=6-x\)
\(\Leftrightarrow2\sqrt{x^2-25}=x+6\) (\(x\ge-6\))
\(\Leftrightarrow4\left(x^2-25\right)=x^2+12x+36\)
\(\Leftrightarrow3x^2-12x-136=0\Rightarrow x=\dfrac{6-2\sqrt{111}}{3}\)
a.
Kiểm tra lại đề, pt này không giải được
b.
ĐKXĐ: \(x\ge0\)
\(\sqrt{x\left(x+1\right)}-\sqrt{x}+1-\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}-1\right)-\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow...\)
Giải phương trình (sử dụng bất đẳng thức):
\(\sqrt{3x^2-12x+21}+\sqrt{5x^2-20x+24}=-2x^2+8x-3\)
\(\sqrt{3x^2-12x+21}=\sqrt{3x^2-12x+12+9}=\sqrt{3\left(x-2\right)^2+9}\ge\sqrt{9}=3\)
\(\sqrt{5x^2-20x+24}=\sqrt{5x^2-20x+20+4}=\sqrt{5\left(x-2\right)^2+4}\ge\sqrt{4}=2\)
\(-2x^2+8x-3=-2x+8x-8+5=-2\left(x-2\right)^2+5\le5\)
\(VP\ge3+2=5,VT\le5\)
Suy ra \(VP=VT=5\)
Suy ra nghiệm của phương trình đạt tại \(x-2=0\Leftrightarrow x=2\).
câu trả lời là : ko bt =))
B1: giải pt: \(\sqrt{x+3}+\sqrt{2x+4}=12-\sqrt{3x+7}\)
B2: giải pt: \(x^3-3x^2-8x+32=4\sqrt{x+1}\)
@Akai Haruma , @phynit giải dùm em vs ạ
giải pt:
a. \(\sqrt{x-2}+\sqrt{10-x}=x^2-12x+40\)
b. \(\sqrt{3x-5}+\sqrt{7-3x}=5x^2-20x+22\)
c. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
giải pt :
a, \(\sqrt[3]{3x-5}=\left(2x-3\right)^3-x+2\)
b, \(\sqrt[3]{81x-8}=x^3-2x^2+\dfrac{4}{3}x-2\)
c,\(\sqrt[3]{x-2}=8x^3-60x^2+151x-128\)
a.
\(\Leftrightarrow\sqrt[3]{3x-5}=\left(2x-3\right)^3+2x-3-\left(3x-5\right)\)
Đặt \(\left\{{}\begin{matrix}2x-3=a\\\sqrt[3]{3x-5}=b\end{matrix}\right.\)
\(\Rightarrow b=a^3+a-b^3\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt[3]{3x-5}=2x-3\)
\(\Leftrightarrow3x-5=\left(2x-3\right)^3\)
\(\Leftrightarrow8x^3-36x^2+51x-22=0\)
\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\)
\(\Leftrightarrow...\)
b.
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+3x-2-\sqrt[3]{81x-8}=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+\dfrac{\left(3x-2\right)^3-\left(81x-8\right)}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+\dfrac{27\left(x^3-2x^2-\dfrac{5}{3}x\right)}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}=0\)
\(\Leftrightarrow\left(x^3-2x^2-\dfrac{5}{3}x\right)\left(1+\dfrac{27}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}\right)=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x=0\)
c.
\(\Leftrightarrow\sqrt[3]{x-2}=\left(2x-5\right)^3+x-3\)
\(\Leftrightarrow\sqrt[3]{x-2}=\left(2x-5\right)^3+\left(2x-5\right)-\left(x-2\right)\)
Đặt \(\left\{{}\begin{matrix}2x-5=a\\\sqrt[3]{x-2}=b\end{matrix}\right.\)
\(\Rightarrow b=a^3+a-b^3\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow2x-5=\sqrt[3]{x-2}\)
\(\Leftrightarrow\left(2x-5\right)^3=x-2\)
\(\Leftrightarrow\left(x-3\right)\left(8x^2-36x+41\right)=0\)
* Giải phương trình
a. \(\sqrt{45x}-2\sqrt{20x}+2\sqrt{80x}=21\)
b. \(\sqrt{x^2-10x+25}=4\)
* Chứng minh đẳng thức
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)
Bài 2 :
Ta có : \(\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{5-2\sqrt{5}\sqrt{3}+3}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(=\left(4+\sqrt{15}\right)\left(5+3-2\sqrt{15}\right)\)
\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)\)
\(=2\left(16-15\right)=2.1=2\)
Bài 1 :
a, ĐKXĐ : \(x\ge0\)
Ta có : \(PT\Leftrightarrow3\sqrt{5x}-4\sqrt{5x}+8\sqrt{5x}=21\)
\(\Leftrightarrow7\sqrt{5x}=21\)
\(\Leftrightarrow\sqrt{5x}=3\)
\(\Leftrightarrow x=\dfrac{9}{5}\left(TM\right)\)
Vậy ...
b, Ta có : \(PT\Leftrightarrow\sqrt{\left(x-5\right)^2}=4\)
\(\Leftrightarrow\left|x-5\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=4\\x-5=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)
Vậy ....
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}.\sqrt{4+\sqrt{15}}.\sqrt{2}.\left(\sqrt{5}-\sqrt{3}\right)\)
\(=1.\sqrt{8+2\sqrt{15}}.\left(\sqrt{5}-\sqrt{3}\right)=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)