cho pt: \(x^2-2x-2m^2=0\)
tìm m để pt có 2 nghiệm x1,x2 \(\ne0\)
cho pt : \(2x^2+\left(2m-1\right)x+m-1=0\)
Tìm m để pt có 2 nghiệm | x1 - x2|=3
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)\)
\(=4m^2-4m+1-8m+8\)
\(=4m^2-12m+9=\left(2m-3\right)^2\)>=0
=>Phương trình luôn có hai nghiệm
\(\left|x_1-x_2\right|=3\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=3\)
\(\Leftrightarrow\sqrt{\left(\dfrac{1-2m}{2}\right)^2-4\cdot\dfrac{m-1}{2}}=3\)
\(\Leftrightarrow\dfrac{1}{4}\left(4m^2-4m+1\right)-2\left(m-1\right)-3=0\)
\(\Leftrightarrow m^2-m+\dfrac{1}{4}-2m+2-3=0\)
\(\Leftrightarrow m^2-3m-\dfrac{3}{4}=0\)
\(\Leftrightarrow4m^2-12m-3=0\)
Đến đây bạn chỉ cần giải pt bậc hai là được rồi
Cho pt : x^2 -2(m-1)x -3+ 2m=0 Tìm m để pt có 2 nghiệm x1;x2 thỏa mãn x1 bình + x2 -2m =0
cho pt x^2 -2mx+2m-1 =0
1) giải pt với m=1
2) tìm m để pt có 2 nghiệm x1 x2 thoả mãn :a)x1+x2=-1
b)x1^2 +x2^2=13
1) Thay m=1 vào phương trình, ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1
1) Bạn tự làm
2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)
a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)
\(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)
Vậy ...
2) Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2\ge0\forall m\)
Do đó, phương trình luôn có nghiệm với mọi m
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m}{1}=-2m\\x_1\cdot x_2=\dfrac{2m-1}{1}=2m-1\end{matrix}\right.\)
a) Ta có: \(x_1+x_2=-1\)
\(\Leftrightarrow-2m=-1\)
hay \(m=\dfrac{1}{2}\)
b) Ta có: \(x_1^2+x_2^2=13\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)
\(\Leftrightarrow\left(-2m\right)^2-2\cdot\left(2m-1\right)=13\)
\(\Leftrightarrow4m^2-4m+2-13=0\)
\(\Leftrightarrow4m^2-4m+1-12=0\)
\(\Leftrightarrow\left(2m-1\right)^2=12\)
\(\Leftrightarrow\left[{}\begin{matrix}2m-1=2\sqrt{3}\\2m-1=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\sqrt{3}+1\\2m=-2\sqrt{3}+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{2\sqrt{3}+1}{2}\\m=\dfrac{-2\sqrt{3}+1}{2}\end{matrix}\right.\)
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
Cho pt x^2-mx+2m-4=0.tìm m để pt có 2 nghiệm x1,x2 chứng minh
A,x1^2 +x2^2 =13
B,x1^3 +x2^3 =9
Δ=(-m)^2-4(2m-4)
=m^2-8m+16=(m-4)^2>=0
=>Phương trình luôn có hai nghiệm
a: x1^2+x2^2=13
=>(x1+x2)^2-2x1x2=13
=>m^2-2(2m-4)-13=0
=>m^2-4m-5=0
=>m=5 hoặc m=-1
b: x1^3+x2^3=9
=>(x1+x2)^3-3*x1x2(x1+x2)=9
=>m^3-3*(2m-4)*m=9
=>m^3-6m^2+12m-9=0
=>m=3
cho pt x2+2(m+1)x+2m+2=0 .Tìm m để pt có 2 nghiệm x1;x2 ,thỏa mãn x1^2 +x2^2=8
Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
hay \(\left(2m+2\right)^2-4\left(2m+2\right)=4m^2+8m+4-8m-8=4m^2-4>0\)
\(\Leftrightarrow4m^2>4\Leftrightarrow m^2>1\Leftrightarrow\left(m-1\right)\left(m+1\right)>0\Leftrightarrow\hept{\begin{cases}m>1\\m>-1\end{cases}\Leftrightarrow m>1}\)
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=\left(2m+2\right)^2\Leftrightarrow x_1^2+x_2^2+2x_1x_2=4m^2+8m+4\)
\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2\left(2m+2\right)=4m^2+8m+4-4m-4=4m^2-4m\)
Lại có : \(x_1^2+x_2^2=8\Rightarrow4m^2-4m-8=0\)
\(\Leftrightarrow4\left(m^2-m-2\right)=0\Leftrightarrow\left(m-2\right)\left(m+1\right)=0\Leftrightarrow\orbr{\begin{cases}m=2\left(chon\right)\\m=-1\left(loai\right)\end{cases}}\)
Để pt có hai nghiệm phân biệt thì Δ' > 0
<=> ( m + 1 )2 - 2m - 2 > 0
<=> m2 + 2m + 1 - 2m - 2 > 0
<=> m2 - 1 > 0 => m > 1 hoặc m < -1
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)
Khi đó x12 + x22 = 8
<=> ( x1 + x2 )2 - 2x1x2 = 8
<=> 4m2 + 8m + 4 - 4m - 4 - 8 = 0
<=> 4m2 + 4m - 8 = 0
<=> m2 + m - 2 = 0
<=> ( m - 1 )( m + 2 ) = 0
<=> m = 1 ( loại ) hoặc m = -2 (tm)
Vậy ...
Cho pt x^2-(m+2)x+2m=0
Tìm m để pt có nghiệm x1 và x2 sao cho
x1-2.x2=0
\(\Delta=m^2+4m+4-8m=\left(m-2\right)^2\)
Để pt có 2 nghiệm phân biệt thì m khác 2
Theo Vi ét ,ta có:
\(\hept{\begin{cases}x_1+x_2=m+2\\x_1\cdot x_2=2\end{cases}}\)
Mà \(x_1-2x_2=0\Rightarrow\frac{2}{x_2}-2x_2=0\Rightarrow2-2x_2^2=0\Rightarrow2\left(1-x_2^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x_2=1\Rightarrow x_1=2\\x_2=-1\Rightarrow x_1=-2\end{cases}\Rightarrow\orbr{\begin{cases}m=0\\m=-5\end{cases}}}\)(t/m)
cho pt x^2-(2m+5)x-2m-6=0 tìm m để pt có 2 nghiệm phân biệt thỏa mãn |x1|+|x2|=7
Δ=(2m+5)^2-4(-2m-6)
=4m^2+20m+25+8m+24
=4m^2+28m+49
=(2m+7)^2>=0
Để phương trình có hai nghiệm phân biệt thì 2m+7<>0
=>m<>-7/2
|x1|+|x2|=7
=>x1^2+x2^2+2|x1x2|=49
=>(x1+x2)^2-2x1x2+2|x1x2|=49
=>(2m+5)^2-2(-2m-6)+2|2m+6|=49
=>4m^2+20m+25+4m+12+2|2m+6|=49
=>4m^2+24m-12+4|m+3|=0
TH1: m>=-3
=>4m^2+24m-12+4m+12=0
=>4m^2+28m=0
=>m=0(nhận) hoặc m=-7(loại)
TH2: m<-3
=>4m^2+24m-12-4m-12=0
=>4m^2+20m-24=0
=>m^2+5m-6=0
=>m=-6(nhận) hoặc m=-1(loại)
Cho PT : x2 - (2m - 1)x + m2- 2 =0
- Tìm giá trị của m để PT có 2 nghiệm phân biệt x1,x2 thỏa / x1-x2/ =\(\sqrt{5}\)
Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot1\cdot\left(m^2-2\right)\)
\(=4m^2-4m+1-4m^2+8\)
\(=-4m+9\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow-4m+9>0\)
\(\Leftrightarrow-4m>-9\)
hay \(m< \dfrac{9}{4}\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1\cdot x_2=m^2-2\end{matrix}\right.\)
Ta có: \(\left|x_1-x_2\right|=\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x_1-x_2\right)^2}=\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)
\(\Leftrightarrow\left(2m-1\right)^2-4\cdot\left(m^2-2\right)=5\)
\(\Leftrightarrow4m^2-4m+1-4m^2+8=5\)
\(\Leftrightarrow-4m=-4\)
hay m=1(thỏa ĐK)
Vậy: m=1
PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m-1)^2-4(m^2-2)>0`
`<=>4m^2-4m+1-4m^2+8>0`
`<=>-4m+9>0`
`<=>m<9/4`
Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`
`|x_1-x_2|=\sqrt5`
`<=>(x_1-x_2)^2=5`
`<=>(x_1+x_2)^2-4(x_1.x_2)=5`
`<=>4m^2-4m+1-4m^2+8=5`
`<=>-4m+8=5`
`<=>4m=3`
`<=>m=3/4(tm)`
Vậy `m=3/4=>|x_1-x_2|=\sqrt5`
PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m-1)^2-4(m^2-2)>0`
`<=>4m^2-4m+1-4m^2+8>0`
`<=>-4m+9>0`
`<=>m<9/4`
Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`
`|x_1-x_2|=\sqrt5`
`<=>(x_1-x_2)^2=5`
`<=>(x_1+x_2)^2-4(x_1.x_2)=5`
`<=>4m^2-4m+1-4m^2+8=5`
`<=>-4m+9=5`
`<=>4m=4`
`<=>m=1(tm)`
Vậy `m=1=>|x_1-x_2|=\sqrt5`