Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trần Lam Trúc
Xem chi tiết
Dinz
4 tháng 8 2021 lúc 16:04

a/ Chứng minh:

\(\left(x+a\right)\left(x+b\right)\)

\(=x^2+bx+ax+ab\)

\(=x^2+\left(ax+bx\right)+ab\)

\(=x^2+x\left(a+b\right)+ab=VP\) (đpcm)

b/ Chứng minh:

\(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)

\(=\left(x^2+ax+bx+ab\right)\left(x+c\right)\)

\(=x^3+cx^2+ax^2+acx+bx^2+bcx+abx+abc\)

\(=x^3+\left(ax^2+bx^2+cx^2\right)+\left(abx+bcx+acx\right)+abc\)

\(=x^3+x^2\left(a+b+c\right)+x\left(ab+bc+ac\right)+abc=VP\) (đpcm)

Diêm Công Lĩnh
Xem chi tiết
tràn thị trúc oanh
Xem chi tiết
Nguyễn Huy Tú
19 tháng 6 2017 lúc 13:44

\(VT=\left(x+a\right)\left(x+b\right)\left(x+c\right)\)

\(=\left(x^2+bx+ax+ab\right)\left(x+c\right)\)

\(=x^3+bx^2+ax^2+abx+cx^2+bcx+acx+abc\)

\(=x^3+\left(ax^2+bx^2+cx^2\right)+\left(abx+bcx+cax\right)+abc\)

\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc=VP\)

\(\Rightarrowđpcm\)

Nguyễn Nhật Tiên Tiên
23 tháng 6 2017 lúc 16:36

Ta có: (x+a)(x+b)(x+c) = x3 + (a+b+c)x2 +(ab+bc+ca)x + abc

VT = (x2+ax+bx+ab)(x+c)

= x3 + ax2 + bx2 + abx + cx2 + cax + bcx + abc (1)

VP = x3 + (a+b+c)x2 +(ab+bc+ca)x + abc

= x3 + ax2 + bx2 + abx + cx2 + cax + bcx + abc (2)

Từ (1) và (2), suy ra:

(x+a)(x+b)(x+c) = x3 + (a+b+c)x2 +(ab+bc+ca)x + abc

Nguyễn Ngọc Trình
Xem chi tiết
Lâm Băng Vy
Xem chi tiết
o0o Dem_Ngay _Xa __Em o0...
9 tháng 6 2016 lúc 9:12

TC:a+b+cd=2p=>b+c=2p-a

=>(b+c)2=(2p-a)2

=>b2+2bc+c2=4p2-4pa+a2

=>b2+2bc+c2-a2=4p2-4pa

=>2bc+b2+c2-a2=4p(p-a) ĐPCM

Võ Đông Anh Tuấn
9 tháng 6 2016 lúc 9:24

Ta có : \(a+b+cd=2p\Rightarrow b+c=2p-a\)

\(\Rightarrow\left(b+c\right)^2=\left(2p-a\right)^2\)

\(\Rightarrow b^2+2bc+c^2=4p^2-4pa+a^2\)

\(\Rightarrow b^2+2bc+c^2-a^2=4p^2-4pa\)

\(\Rightarrow2bc+b^2+c^2-a^2=4p\left(p-a\right)\)

\(\RightarrowĐPCM\)

MaX MaX
Xem chi tiết
Hoàng Thị Lan Hương
6 tháng 7 2017 lúc 15:27

a. \(VT=\left(x+a\right)\left(x+b\right)=x^2+ã+bx+ab=x^2+\left(a+b\right)x+ab=VP\)

B. \(VT=\left(x+a\right)\left(x+b\right)\left(x+c\right)=\left[\left(x+a\right)\left(x+b\right)\right].\left(x+c\right)\)

\(=\left[\left(x^2+\left(a+b\right)x\right)+ab\right].\left(x+c\right)=x^3+x^2c+\left(a+b\right)x^2+c\left(a+b\right)x+abx+abc\)

\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc=VP\)

Nguyễn Ngọc Phượng
Xem chi tiết
Võ Đông Anh Tuấn
22 tháng 8 2016 lúc 9:52

a ) VP = \(\left(x+a\right).\left(x+b\right)=x^2+bx+ax+ab\)

     VT = \(x^2+\left(a+b\right).x+ab=x^2+ax+bx+ab\)

\(\Rightarrow VT=VP\)

b ) VP : \(\left(x+a\right).\left(x+b\right)\left(x+c\right)=\left(x^2+bx+ax+ab\right).\left(x+c\right)\) ( Vế đầu áp dụng luôn ở câu a )

\(=x^2.x+x^2.c+bx.x+bx.c+ax.x+ax.c+ab.x+ab.c\)

\(=x^3+cx^2+bx^2+cbx+ax^2+cax+abx+abc\)

\(=x^3+\left(cx^2+bx^2+ax^2\right)+\left(cbx+cax+abx\right)+abc\)

\(=x^3+\left(a+b+c\right)x^2+\left(ab+ac+bc\right).x+abc\)

Vậy \(\left(x+a\right).\left(x+b\right).\left(x+c\right)=x^3+\left(a+b+c\right).x^2+\left(ab+ca+bc\right).x+abc\)

Ngô Tấn Đạt
22 tháng 8 2016 lúc 14:44

a) VP =\(\left(x+a\right)\left(x+b\right)=x^2+bx+\text{ax+ab}\)

\(VT=x^2+\left(a+b\right).x+ab=x^2+ax+bx+ab\\ =>VT=VP\)

b) VP : \(\left(x+a\right).\left(x+b\right).\left(x+c\right)=\left(x^2+bx+ax+ab\right).\left(x+c\right)\)( Vế đầu áp dụng luôn ở câu a )

\(=x^2.x+x^2.c+bx.x+bx.c+\text{ax}.x+\text{ax}.c+ab.c+ab.c\\ =x^3+cx^2+bx^2-cbx+\text{ax}^2+ca.x+ab.x+abc\\ \)

\(=x^3+\left(cx^2+bx^2+\text{ax}^2\right)-\left(cbx+c\text{ax}+abx\right)+abc\\ =x^3-\left(a+b+c\right)x^2+\left(ab+ac+bc\right).x+abc\)

Vậy \(\left(x+a\right)\left(x-b\right)\left(x+c\right)=x^3+\left(a+b+c\right).x^2+\left(ab+ca+bc\right).x+abc\)

 

Tôi tên là moi
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2021 lúc 21:42

Câu 4: 

\(=\dfrac{a\left(a-b\right)-c\left(a-b\right)}{a\left(a+b\right)-c\left(a+b\right)}=\dfrac{a-b}{a+b}\)

Nguyễn Thanh Xuân
Xem chi tiết
Arima Kousei
19 tháng 7 2018 lúc 17:42

P/s : Phần b ) : \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)

a )   \(\left(x+a\right)\left(x+b\right)=x^2+ax+bx+ab=x^2+\left(a+b\right)x+ab\)

b )   \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\) 

\(=\left[x^2+\left(a+b\right)x+ab\right]\left(x+c\right)\)

\(=x^2\left(x+c\right)+\left(a+b\right)x\left(x+c\right)+ab\left(x+c\right)\)

\(=x^3+x^2c+\left(ax+bx\right)\left(x+c\right)+abx+abc\)

\(=x^3+x^2c+ax^2+bx^2+axc+bxc+abx+abc\)

\(=x^3+\left(x^2a+x^2b+x^2c\right)+\left(abx+bcx+axc\right)+abc\)

\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)