Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quang Huy
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 3 2023 lúc 16:50

a.

Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)

b.

Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)

\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)

c.

Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)

\(\Rightarrow m>-\dfrac{3}{2}\)

Trần Mun
Xem chi tiết
Dang Tung
12 tháng 12 2023 lúc 20:38

loading... 

Trần Mun
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 12 2023 lúc 20:30

a: Để hàm số đồng biến trên R thì \(m^2-4>0\)

=>\(m^2>4\)

=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

b: Để hàm số nghịch biến trên R thì \(m^2-4< 0\)

=>\(m^2< 4\)

=>-2<m<2

trần thu mai anh
12 tháng 12 2023 lúc 20:31

a) Hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 

Vậy m > 1313 nghịch biến

⇔ 3m - 1 < 0

⇔ 3m < 1

⇔ m < 1313 thì hàm số y = (3m - 1)x + 2 nghịch biến

c) Đồ thị hàm số y = (3m - 1)x + 2 với m ≠≠ 1313)

⇔ 3 = 6m - 2 + 2

⇔ 3 = 6m

⇔ m = 1212 thì đồ thị hàm số y = (3m - 1)x + 2 đi qua điểm A(2; 3)

Kiều Vũ Linh
12 tháng 12 2023 lúc 20:32

a) Hàm số đồng biến khi:

m² - 4 > 0

⇔ m² > 4

⇔ m < -2 hoặc m > 2

Vậy m < -2; m > 2 thì hàm số đồng biến

b) Hàm số nghịch biến khi:

m² - 4 < 0

⇔ m² < 4

⇔ -2 < m < 2

Vậy -2 < m < 2 thì hàm số nghịch biến

phạm phương quỳnh
Xem chi tiết
ngừi ngu
Xem chi tiết
Võ Thị Quỳnh Giang
Xem chi tiết
pham trung thanh
12 tháng 11 2017 lúc 20:53

a)Để y là hàm số bậc nhất thì

\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)

Từ 2 điều trên suy ra m-2=0

                                  =>m=2

Vậy m=2

Lê vsbzhsjskskskssm
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 6 2021 lúc 9:35

\(y'=x^2-2\left(m-2\right)x+m^2-3m+2\)

a. Hàm đồng biến trên khoảng đã cho khi và chỉ khi:

\(y'\ge0\) ; \(\forall x>3\)

\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x>3\)

Ta có: \(\Delta'=\left(m-2\right)^2-\left(m^2-3m+2\right)=-m+2\)

TH1: \(\Delta'\le0\Leftrightarrow m\ge2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-3m+2-4\left(m-2\right)+4\ge0\\2\left(m-2\right)< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-7m+4\ge0\\m< 4\end{matrix}\right.\) \(\Leftrightarrow m< 2\)

Kết hợp lại ta được hàm đồng biến trên \(\left(2;+\infty\right)\) với mọi m

Nguyễn Việt Lâm
20 tháng 6 2021 lúc 9:49

b.

Hàm số đồng biến trên khoảng đã cho khi và chỉ khi:

\(y'\ge0\) ; \(\forall x< 0\)

\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x< 0\)

TH1: \(\Delta'=-m+2\le0\Leftrightarrow m\ge2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\0\le x_1< x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1+x_2=2\left(m-2\right)>0\\x_1x_2=m^2-3m+2\ge0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Kết hợp lại ta được: \(m\ge2\)

Nguyễn Việt Lâm
20 tháng 6 2021 lúc 9:55

c.

Hàm số nghịch biến trên khoảng đã cho khi và chỉ khi:

\(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-4m+3\le0\) ; \(\forall x\in\left(-2;3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x_1\le-2< 3\le x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\f\left(-2\right)\le0\\f\left(3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\4+4\left(m-2\right)+m^2-4m+3\le0\\9-6\left(m-2\right)+m^2-4m+3\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2\le1\\m^2-10m+24\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

Shuu
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 7 2021 lúc 23:16

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)

Quang quang
Xem chi tiết
Nobi Nobita
17 tháng 1 2021 lúc 15:25

a) Khi \(x>0\)thì hàm số đã cho đồng biến \(\Leftrightarrow3m-2>0\)

\(\Leftrightarrow3m>2\)\(\Leftrightarrow m>\frac{2}{3}\)

b) Khi \(x>0\)thì hàm số đã cho nghịch biến \(\Leftrightarrow3m-2< 0\)

\(\Leftrightarrow3m< 2\)\(\Leftrightarrow m< \frac{2}{3}\)

Khách vãng lai đã xóa