-y^2+2xy-x^2+3x-3y
Phân tích đa thức thành nhân tử.
a,3x^2-3xy-5x+5y
b,x^2+4x-45
c,3y^3+6xy^2+3x^2y
d,x^3-3x^2-4x+12
e,x^3+3x^2+3x+1
f,x^2-3x+xy-3y
g,x^2-2xy+y^2-4
h,x^2-2xy+y^2-z^2
i,3x^2+6xy+3y^2-3z^2
HUHU. AI GIÚP EM VỚI. EM CẦN NỘP GẤP.
a) x^2+x-y^2+y
b) 3x^2+3y^2-6xy-12
c) 3x+3y-x^2-2xy-y^2
d) x^3-x+3x^2+3xy^2-y+y^3
a) Nhóm x^2 và y^2 ; x và y
b) Nhóm 3 hạng tử đầu lại vs nhau . Sau cùng xuất hiện nhân tử chung là 3
c) Nhóm 2 hạng tử đầu với nhau. ba hạng tử còn lại với nhau .
d) .....
D,ghép đầu với cuối là hằng dẳng thức 2 cái giữa với nhau là nhân tử chung là 3x
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
d)3x2+3y2+3xy-3x+3y+3=0
⇔ 6x2+6y2+6xy-6x+6y+6=0
⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Phân tích đa thức thành nhân tử
1/x^3 - 2x^2 - 9x + 18 2/3x^2 -5x - 3y^2 + 5y
3/49 - x^2 + 2xy - y^2 4/ 1/2x^2 - 2y^2
5/ x^2 - 4x^2y^2 + 2xy 6/ 3x - 3y - x^2 + 2xy - y^2
1/x^3 - 2x^2 - 9x + 18
= x\(^2\)( x - 2 ) - 9 ( x - 2 ) = ( x\(^2\) - 9 ) ( x - 2 )= ( x - 3 ) ( x +3 ) ( x - 2 )
2/3x^2 -5x - 3y^2 + 5y
= 3( x\(^2\) - y\(^2\) ) - 5 ( x - y ) = 3 ( x - y ) ( x + y ) - 5 ( x - y ) = ( x - y ) [ 3( x+ y ) - 5 ]
= ( x - y ) ( 3x + 3y - 5 )
3/49 - x^2 + 2xy - y^2
= 49 - ( x\(^2\) - 2xy + y\(^2\) ) = 49 - ( x - y )\(^2\) = ( 7 - x + y ) ( 7 + x - y )
5/ x^2 - 4x^2y^2 + 2xy
= x ( x - 4xy\(^2\) + 2y )
6/ 3x - 3y - x^2 + 2xy - y^2
= ( 3x - 3y ) - ( x\(^2\) - 2xy + y\(^2\) ) = 3 ( x - y ) - ( x - y )\(^2\) = ( x - y ) ( 3 - x + y )
phân tích thành nhân tử
b. x^2+2xy+y^2-16
c. 3x^2+5x-3xy-5y
d. 4x^2-6x^3y-2x^2+8x
e. x^2-4-2xy+y^2
k. x^2-y^2-z^2-2yz
m. 6xy+5x-5y-3x^2-3y^2
b)x2+2xy+y2-16=(x+y)2-42=(x+y+4)(x+y-4)
c)3x2+5x-3xy-5y=x(3x+5)-y(3x+5)=(3x+5)(x-y)
d)4x2-6x3y-2x2+8x=2x(2x-3x2y-x+4)
e)x2-4-2xy+y2=(x2-2xy+y2)-4=(x-y)2-22=(x-y-2)(x-y+2)
k)x2-y2-z2-2yz=x2-(y+z)2=(x-y-z)(x+y+z)
m)6xy+5x-5y-3x2-3y2=3(x2-2xy+y2)+5(x-y)=3(x-y)2+5(x-y)=(x-y)(3x-3y+5)
b. (x^2+2xy+y^2)-16 =(x+y)^2-16=(x+y+4)(x+y-4)
-y^2+2xy-x^2+3x-3y
-y^2 +2xy - x^2 +3x-3y
=-( y^2-2xy+x^2) +3 (x-y)
= - (y-x)^2 +3(x-y)
=-(x-y)^2 +3(x-y)
=> (x-y) (3- x+y)
-y^2+2xy-x^2+3x-3y
=-x^2+2xy-y^2+3x-3y
=-(x^2-2xy+y^2)+3(x-y)
=-(x-y)^2+3(x-y)
=3(x-y)-(x-y)^2
=(x-y)(3-x+y)
x^2-2xy+y^2+3x-3y+10