Tính số đo ba góc trong một tam giác biết ba góc của nó có tỉ lệ với 2,4,3.
Tính số đo ba góc trong một tam giác biết ba góc của nó có tỉ lệ với 2,4,3.
Gọi 3 góc đó là A ; B ; C
Theo đề bài , ta có : và A + B + C = 180
A : B : C = 2 : 4 : 3
=> \(\frac{A}{2}=\frac{B}{4}=\frac{C}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{A}{2}=\frac{B}{4}=\frac{C}{3}=\frac{A+B+C}{2+4+3}=\frac{180}{9}=20\)
\(\Rightarrow\hept{\begin{cases}A=2.20=40\\B=4.20=80\\C=3.20=60\end{cases}}\)
bài 1; tìm x
a, 3nhân(3-x)-l1-xl = 15
bài 2 tính số đo ba góc trong của 1 tam giác biết 3 góc của nó tỉ lệ với 2,4,3
Tính số đo các góc của tam giác ABC biết góc A, góc B, góc C lần lượt tỉ lệ với 2,4,3
Theo bài ra ta có: A:B:C=2:4:3 => \(\frac{A}{2}=\frac{B}{3}=\frac{C}{4}\)
Mà tổng các góc trong một tam giác bằng 180 độ nên A+B+C=1800
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{A}{2}=\frac{B}{3}=\frac{C}{4}=\frac{A+B+C}{2+4+3}=\frac{180}{9}=\)200
=> A=400
B=600
C=800
tick đúng nha
Tam giác ABC có số đo các góc A, B, C tỉ lệ với 3; 5; 7. Tính số đo các góc của tam giác ABC, biết rằng tổng số đo ba góc trong một tam giác bằng 1800 .
Giúp mình với
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^0}{15}=12^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=60^0\\\widehat{C}=84^0\end{matrix}\right.\)
Một tam giác có số đo ba góc lần lượt tỉ lệ với 2;3;4.Tính số đo ba góc của tam giác đó
Tam giác ABC có số đo các góc là \widehat{A}A , \widehat{B}B , \widehat{C}C lần lượt tỉ lệ với 2 ; 3 ; 4. Tính số đo các góc của \DeltaΔABC.
tam giác ABC có số đo các góc A,B,C tỉ lệ với 3,5,7 .Tính số đo các góc của tam giác ABC biết rằng tổng số đo ba trong 1 tam giác = 180o
Một tam giác có số đo ba góc lần lượt tỉ lệ với 3;5;7.Tính số đo mỗi góc của tam giác đó
GỌI ba góc của tam giác lần lượt là a, b,c
theo bài ra ta có \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) Và a + b +c = 180 độ (vì tổng ba góc = 180 độ)
Theo dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{180}{15}=12\)
=> a = 3. 12 = 36 độ
=> b = 12 . 5 = 60 độ
=> c = 12.7 = 84 độ
Tam giác ABC có số đo các góc A, B, C tỉ lệ 3 : 5 : 7. Tính số đo các góc của tam giác ABC (Biết rằng tổng số đo ba góc trong một tam giác bằng \(180^0\))
Theo đề bài ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) và \(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^o}{15}=12^o\)
\(\Rightarrow\widehat{A}=12^o.3=36^o\)
\(\widehat{B}=12^o.5=60^o\)
\(\widehat{C}=12^o.7=84^o\)
nếu số đo (độ) các góc của tam giác ABC là A , B , C (độ) thì theo điều kiện bài ra và tính chất của dãy tỉ số bằng nhau , ta có \(\dfrac{A}{3}=\dfrac{B}{5}=\dfrac{C}{7}=\dfrac{A+B+C}{3+5+7}=\dfrac{180}{15}=12\)
vậy : A = 3 . 12 = 36
B = 5 . 12 = 60
C = 7 . 12 = 84
=> A = 36 (độ) ; B = 60 (độ) ; C = 84 (độ)
Gọi số đo của các góc A,B,C trong tam giác ABC lần lượt là là a,b,c
Ta có: \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}\) và tổng ba góc là 180o
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{180^o}{15}=12^o\)
+) Nếu \(\dfrac{a}{3}=12\)⇒ a= 36o
+)Nếu \(\dfrac{b}{5}\)=12⇒b=60o
+)Nếu \(\dfrac{c}{7}\)=12⇒c=84o
Vậy góc A bằng 36o, góc B bằng 60o, góc C bằng 84o
tính số đo ba góc của tam giác ABC biết rằng số đo ba góc tỉ lệ với 3, 5, 7
Theo đề bài ta có: ˆA+ˆB+ˆC=180oA^+B^+C^=180o và ˆA3=ˆB5=ˆC7A^3=B^5=C^7
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
ˆA3=ˆB5=ˆC7=ˆA+ˆB+ˆC3+5+7=180o15=12oA^3=B^5=C^7=A^+B^+C^3+5+7=180o15=12o
⇒ˆA=12o.3=36o⇒A^=12o.3=36o
ˆB=12o.5=60oB^=12o.5=60o
ˆC=12o.7=84o
HT
Theo đề bài ta có: ˆA+ˆB+ˆC=180oA^+B^+C^=180o và ˆA3=ˆB5=ˆC7A^3=B^5=C^7
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
ˆA3=ˆB5=ˆC7=ˆA+ˆB+ˆC3+5+7=180o15=12oA^3=B^5=C^7=A^+B^+C^3+5+7=180o15=12o
⇒ˆA=12o.3=36o⇒A^=12o.3=36o
ˆB=12o.5=60oB^=12o.5=60o
ˆC=12o.7=84o