ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU, TA ĐƯỢC:
a/2 = b/4= c/3 = a+b+c/2+4+3 = 180/9 = 20
a= 2.20 = 40
b= 4.20 = 80
c= 3. 20 = 60
HT~~~
ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU, TA ĐƯỢC:
a/2 = b/4= c/3 = a+b+c/2+4+3 = 180/9 = 20
a= 2.20 = 40
b= 4.20 = 80
c= 3. 20 = 60
HT~~~
Ba lớp 7A, 7B, 7C cùng mua một số tăm từ thiện. Lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5, 6, 7 nhưng sao đó chia theo tỉ ;ệ 4, 5, 6 nên có một lớp nhận nhiều hơn dự định 5 gói. Tính tổng số góc tăm mà ba lớp đã mua.
Cho tam giác ABC,có góc A=90 độ.Tia phân giác Bd của góc ABC(D thuộc AC).Trên BD lấy điểm E sao cho BE=BA,ED cắt BA tại K.
a,Chứng minh tam giác ABD=tam giác EBD
b,Chứng minh DA=DE và góc ABC=góc EDC
c,Kẻ AH vuông với BC.Chứng minh AH//DE
Giúp mik với!!!!!!!!
cho tam giác ABC bằng tam giác HIK trong đó AB bằng 2cm , góc B bằng 40 độ , BC bằng 4 cm . Em có thể suy ra số đo của những cạnh nào , những góc nào của tam giác HIK
Tính số đo góc A, B, Của tam giác ABC trong mỗi trường hợp trên
a)2.góc B= 3.góc B=6.góc C
b)5.góc A=3.góc B và 2.góc B=góc C
Cho tam giác MNP vuông tại M . Tia phân giác góc MNP cắt MP ở D . Kẻ DE vuông góc NP (E thuộc NP)
a) Chứng minh tam giác MND = tam giác END
b) Chứng minh MD là đường trung trực ME
c) Gọi F là giao điểm của MN và DE . Nối B với F . Chứng minh tam giác MEP cân và góc NDI qua trung điểm PF
d) Tính MD và
help mik với :<
Cho tam giác ABC vuông tại A. Góc B lớn hơn góc C. Vẽ phân giác của góc B cắt AC tại D. Vẽ DE song song với BC.
a)CMR tam giác BDE cân
b)Vẽ phân giác của góc BDE cắt BC tại F. So sánh DF và CF
nêu tính chất mối quan hệ giữa góc và cạnh đối diện trong tam giác
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm D sao cho AB = BD. Từ D vẽ đường vuông góc với BC cắt AC tại E. Vẽ Cx Là tia đối của tia CB. Tia phân giác của góc ACx cắt BE tại F.
a) So sánh AE và DE
b) Chứng minh BE vuông góc với AD
c) Từ F kẻ FM, FN lần lượt vuông góc với AC và Cx (M\(\in\)AC và N\(\in\)Cx) CM FN=FM
d) Tính góc BAF
Cho tam giác ABC cân tại A. Trên tia đối tia BA và CA lấy lần lượt hai điểm M và N sao cho BM=CN. Gọi I là giao điểm của MC và BN
a/ Chứng minh rằng: MI=MN
b/ Tia phân giác của góc AMC cắt AI tại O. Chứng minh rằng: MO>\(\frac{MC}{2}\)