cho 2n+1 là số nguyên tố (n thuộc N và n>2 ) . CM 2n-1là hợp số
Bafi1:
2n+3 và 6n+7 ( x thuộc N)
bài 2:
CM rằng :
a)n+ 2 ,2n +3 là số nguyên tố
b)3n+1 và 2n+1 là hai số nguyên tố
a, Gọi d là ƯCLN của n + 2 và 2n + 3
\(\Rightarrow n+2⋮d\)
\(\Rightarrow2\left(n+2\right)⋮d\)
\(\Rightarrow2n+4⋮d\)
Mà \(2n+3⋮d\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\) mà d là ƯCLN \(\Rightarrow d=1\)
=> 2 số n + 2 và 2n + 3 là 2 số nguyên tố cùng nhau
b, Gọi d là ƯCLN của 3n + 1 và 2n + 1
\(3n+1⋮d\) và \(2n+1⋮d\)
\(\Rightarrow2\left(3n+1\right)⋮d\)và \(3\left(2n+1\right)⋮d\)
\(\Rightarrow6n+2⋮d\) và \(6n+3⋮d\)
\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\)mà d là ƯCLN => d = 1
=> 2 số 3n +1 và 2n + 1 là hai số nguyên tố cùng nhau
Cho a=1+2+3+...+n và b=2n+1 (với n thuộc N;n>1). CM: a và b là 2 số nguyên tố cùng nhau?
Ta có :
a = 1 + 2 + 3 + ... + n
Số lượng số của tổng a là :
( n - 1 ) : 1 + 1 = n ( số )
Tổng a là :
( n + 1 ) x n : 2
Do ( n + 1 ) x n là 2 số liên tiếp
=> ( n + 1 ) x n \(⋮2\)
=> ( n + 1 ) x n : 2 \(⋮1\), n > 1
=> a là số nguyên tố
Ta có :
a = 1 + 2 + 3 + ... + n
Số lượng số của tổng a là :
( n - 1 ) : 1 + 1 = n ( số )
Tổng a là :
( n + 1 ) x n : 2
Do ( n + 1 ) x n là 2 số liên tiếp
=> ( n + 1 ) x n ⋮2
=> ( n + 1 ) x n : 2 ⋮1, n > 1
=> a là số nguyên tố
tổng a là
\(\frac{n.\left(n+1\right)}{2}\)
do n và n+1 là hai số liên tiếp
\(\Rightarrow\)\(n.\left(n+1\right)⋮2\)
\(\Rightarrow\)\(\frac{n.\left(n+1\right)}{2}⋮1\left(n>1\right)\)
\(\Rightarrow\)a là số nguyên tố
\(\Rightarrow\)\(\left(a,b\right)=1\left(đpcm\right)\)
chứng tỏ n và 2n+1 là 2 số nguyên tố cùng nhau(n thuộc tập hợp N)
Gọi ƯCLN(2n+1 ; n ) là d
=> ( 2n + 1 ) - 2n \(⋮\) d
=> 1 \(⋮\) d
=> d = 1
Vậy ..........
bài 1:tìm n thuộc N*:
a) 2+4+6+8+...+2n= 210
b)1+3+5+7+....+(2n - 1)=225
bài 2: cho P và P+8 là số nguyên tố.P> 3. Hỏi P+100 là số nguyên tố hay hợp số?
1.Tìm số nguyên tố p sao cho p+3 cũng là số nguyên tố
2. Cho n thuộc N. Chứng minh rằng hai số n+1 và 2n+3 là hai số nguyên tố cùng nhau
1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2
2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên
=>n+1;2n+3 chia hết cho a
=>2.(n+1);2n+3 chia hết cho a
=>2n+2;2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=>1 chia hết cho a
=>a=1
=>n+1 và 2n+3 là hai số nguyên tố cùng nhau
Bài 2: CMR
a,7n+10 và 5n+7 là 2 số nguyên tố cùng nhau (n thuộc N)
b,2n+1 và 6n+5 là 2 số nguyên tố cùng nhau ( n thuộc N )
c,n+1 và 3n+4 là 2 số nguyên tố cùng nhau ( n thuộc N )
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
tìm n thuộc N để 2n - 1 và 2n +1 là số nguyên tố
chứng minh rằng 2n - 1 và 2n + 1 không thể đồng thời là 2 số nguyên tố(n thuộc N)
Mình thử n = 2 thì 2n - 1 = 2 . 2 - 1 = 3 (3 là số nguyên tố)
n = 2 thì 2n + 1 = 2 . 2 + 1 = 5 (5 là số nguyên tố)
Vậy đề bạn sai
Cho n thuộc N,CMR : 2n + 1 và 3n + 1 là 2 số nguyên tố cùng nhau .
Giải:
Gọi \(d=UCLN\left(2n+1;3n+1\right)\)
Ta có: \(2n+1⋮d\Rightarrow3\left(2n+1\right)⋮d\Rightarrow6n+3⋮d\)
\(3n+1⋮d\Rightarrow2\left(3n+1\right)⋮d\Rightarrow6n+2⋮d\)
\(\Rightarrow6n+3-6n-2⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow UCLN\left(2n+1;3n+1\right)=1\)
\(\Rightarrow2n+1\) và 3n + 1 là 2 số nguyên tố cùng nhau
Vậy...