Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Linh
Xem chi tiết

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 15:33

2: A=n^2+3n+2=(n+1)(n+2)

Để A là số nguyên tố thì n+1=1 hoặc n+2=2

=>n=0

Phùng Tấn Phong
Xem chi tiết
Phạm Thị Mai Thi
Xem chi tiết
Nguyễn Nhật Minh
25 tháng 12 2015 lúc 11:40

\(n^2+404=a^2\Leftrightarrow\left(a-n\right)\left(a+n\right)=1.404=4.101=2.202\)

+a -n =4 và a+n =101 => n =(101-4):2  = loại

+a-n=1 ; a +n =404 => n = (404 -1):2 =loại

+ a -n =2 ; a+n =202 => n =(202 -2 ) :2 = 100

Vậy n =100

 

Nguyễn Quang Đăng
Xem chi tiết
king of king bijuu
Xem chi tiết
Đỗ Hoàng Gia Huy
23 tháng 7 2016 lúc 9:26

đặt n2 + 34 = a2

34 = a2-n2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n <=a+n

suy ra a-n        1        2 

         a+n        34      17

        mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

vậy không tồn tại x

masu konoichi
Xem chi tiết
Tống Lê Kim Liên
17 tháng 11 2015 lúc 12:15

Tham khảo câu hỏi tương tự nhé bạn .

Tick tớ đc chứ 

Chu Thị Mai Hoa
Xem chi tiết
Lãnh Hạ Thiên Băng
9 tháng 1 2017 lúc 7:28

Vì 2n+1 là số chính phương lẻ nên 

2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4

Do đó n+1 cũng là số lẻ, suy ra

n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8

Lại có

(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2

Ta thấy

3n+2≡2(mod3)3n+2≡2(mod3)

Suy ra

(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên

n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)

Do đó

n⋮3n⋮3

Vậy ta có đpcm.

Chu Thị Mai Hoa
9 tháng 1 2017 lúc 21:06

cảm ơn bạn nhiều !!

phong nguyễn
Xem chi tiết
naruto uzumi
Xem chi tiết
Thắng Nguyễn
15 tháng 5 2016 lúc 16:09

a) đề thiếu

Yuu Shinn
15 tháng 5 2016 lúc 16:09

Đặt n2 + 2006 = a2 (a thuộc Z)

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 (k$$N*)

+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số 

+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số

Vậy n2 + 2006 là hợp số

Thắng Nguyễn
15 tháng 5 2016 lúc 16:10

yamamoto takeshi đề thiếu mà you vẫn làm đc hả