Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lipphangphangxi nguyen k...
Xem chi tiết
Đỗ Tiến
10 tháng 3 2016 lúc 11:52

A = x2 + y2 + xy - 5x - 4y + 2002 
= x2 + x(y - 5) + y2 - 4y + 2002 
= x2 + 2.x.(y - 5)/2 + (y - 5)2/4 - (y - 5)2/4 + y2 - 4y + 2002 
= [x + (y - 5)/2]2 + 3/4*y2 - 3y/2 + 7983/4 
>= 3/4*y2 - 3y/2 + 7983/4 (hàm bậc 2,min tại y = 1) 
= 3/4 - 3/2 + 7983/4 = 1995 
vậy minA = 1995,dấu = xảy ra khi x + y - 5 = 0 và y = 1 
<> x = 4 và y = 1

Minh Lê Thái Bình
10 tháng 3 2016 lúc 15:29

x2+(y−5)x+y2−4y+2002−A=0

Δ=(y−5)^2−4(y^2−4y+2002−A)
=y^2−10y+25−4y^2+16y−8008+4A
=−3(y−1)^2−7980+4A≥0

→4A−7980≥0

→A≥1995

Dấu bằng khi y=1;x=2

do thi thuy
Xem chi tiết
anbe
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 23:12

\(\dfrac{M}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)

\(\Rightarrow M\le9\)

\(M_{max}=9\) khi \(\left\{{}\begin{matrix}x+y=0\\x^2+y^2+xy=3\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-\sqrt{3};\sqrt{3}\right);\left(\sqrt{3};-\sqrt{3}\right)\)

\(\dfrac{M}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{\dfrac{1}{3}\left(x^2+y^2+xy\right)+\dfrac{2}{3}\left(x^2+y^2-2xy\right)}{x^2+y^2+xy}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\)

\(\Rightarrow M\ge1\)

\(M_{min}=1\) khi \(\left\{{}\begin{matrix}x-y=0\\x^2+y^2+xy=3\end{matrix}\right.\) \(\Rightarrow x=y=\pm1\)

Bùi Hoàng Tuấn Kiệt
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 7 2021 lúc 18:09

\(\dfrac{x^2+y^2}{2}\ge xy\Rightarrow-xy\ge-\dfrac{x^2+y^2}{2}\)

\(\Rightarrow4=x^2+y^2-xy\ge x^2+y^2-\dfrac{x^2+y^2}{2}=\dfrac{x^2+y^2}{2}\)

\(\Rightarrow x^2+y^2\le8\)

\(C_{max}=8\) khi \(x=y=\pm2\)

\(x^2+y^2\ge-2xy\Rightarrow-xy\le\dfrac{x^2+y^2}{2}\)

\(4=x^2+y^2-xy\le x^2+y^2+\dfrac{x^2+y^2}{2}=\dfrac{3}{2}\left(x^2+y^2\right)\)

\(\Rightarrow x^2+y^2\ge\dfrac{8}{3}\)

\(C_{min}=\dfrac{8}{3}\) khi \(\left(x;y\right)=\left(-\dfrac{2}{\sqrt{3}};\dfrac{2}{\sqrt{3}}\right);\left(\dfrac{2}{\sqrt{3}};-\dfrac{2}{\sqrt{3}}\right)\)

Bùi Võ Đức Trọng
21 tháng 7 2021 lúc 14:09

undefinedĐúng thì like giúp mik nha bạn. Thx bạn

Trung đang nuôi chó =)))
Xem chi tiết
Nguyễn Huy Tú
24 tháng 7 2021 lúc 13:28

A = y^2 - 4y + 9 = y^2 - 4y + 4 + 5 

= ( y - 2 )^2 + 5 >= 5 

Dấu ''='' xảy ra khi y = 2 

Vậy GTNN A là 5 khi y = 2

B = x^2 - x + 1 = x^2 - x + 1/4 + 3/4 = ( x - 1/2 )^2 + 3/4 >= 3/4

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTNN B là 3/4 khi x = 1/2 

C = 2x^2 - 6x = 2 ( x^2 - 3x + 9 / 4 - 9/4 ) 

= 2 ( x - 3/2 )^2 - 9/2 >= -9/2 

Dấu ''='' xảy ra khi x = 3/2 

Vậy GTNN C là -9/2 khi x = 3/2 

Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 0:34

a) Ta có: \(A=y^2-4y+9\)

\(=y^2-4y+4+5\)

\(=\left(y-2\right)^2+5\ge5\forall y\)

Dấu '=' xảy ra khi y=2

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

giúp mik với
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 21:36

a: \(=\left(3-x\right)\left(x+1\right)\)

b: \(=3x\left(x-y\right)-5\left(x-y\right)\)

=(x-y)(3x-5)

c: \(=x\left(x-y\right)-10\left(x-y\right)\)

\(=\left(x-y\right)\left(x-10\right)\)

Lấp La Lấp Lánh
26 tháng 10 2021 lúc 21:39

a) \(=x\left(3-x\right)+\left(3-x\right)=\left(3-x\right)\left(x+3\right)\)

b) \(=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)

c) \(=x\left(x-y\right)-10\left(x-y\right)=\left(x-y\right)\left(x-10\right)\)

d) \(=\left(x+y\right)^2-16=\left(x+y-4\right)\left(x+y+4\right)\)

e) \(=\left(x-y\right)\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(x-y-4\right)\)

f) \(=9-\left(4x^2-4xy+y^2\right)=9-\left(2x-y\right)^2=\left(3-2x+y\right)\left(3+2x-y\right)\)

g) \(=y\left(y^2-2xy+x^2-y\right)\)

h) \(=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

i) \(=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x-y\right)\left(2x+y\right)\)

huy
Xem chi tiết
Hưng Việt Nguyễn
Xem chi tiết
Akai Haruma
15 tháng 9 2021 lúc 21:34

$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$

$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$

$\Leftrightarrow x=3; y=-2$

---------------------

$B=9x^2+y^2+2z^2-18x+4z-6y+30$

$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$

$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$

$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$

$\Leftrightarrow x=1; y=3; z=-1$

Akai Haruma
15 tháng 9 2021 lúc 21:40

$C=x^2+y^2+z^2-xy-yz-xz+3$

$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$

$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$

$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$

$\Rightarrow C\geq 3$

Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$

$\Leftrihgtarrow x=y=z$

--------------------------------------

$D=5x^2+2y^2+4xy-2x+4y+2021$

$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$

$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$

$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$

$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$

Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$

$\Leftrightarrow x=1; y=-2$

Akai Haruma
15 tháng 9 2021 lúc 21:42

$E=x^2-2x+4y^2+4y+2014$

$=(x^2-2x+1)+(4y^2+4y+1)+2012$

$=(x-1)^2+(2y+1)^2+2012$

$\geq 2012$

Vậy $E_{\min}=2012$. Giá trị này đạt tại $x-1=2y+1=0$

$\Leftrightarrow x=1; y=\frac{-1}{2}$

----------------------

$F=5x^2+5y^2+8xy+2y-2x+30$

$=4(x^2+2xy+y^2)+x^2+y^2+2y-2x+30$

$=4(x+y)^2+(x^2-2x+1)+(y^2+2y+1)+28$

$=4(x+y)^2+(x-1)^2+(y+1)^2+28\geq 28$

Vậy $F_{\min}=28$. Giá trị này đạt tại $x+y=x-1=y+1=0$

$\Leftrightarrow x=1; y=-1$