Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nhinhanhnhen
Xem chi tiết
Nguyễn Văn Tiến
1 tháng 3 2016 lúc 18:30

A=x2+y2+xy-5x-4y+2002

2A=x2+2xy+y2+x2-10x+25+y2-8y+16+1961

2A=\(\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2+1961\ge1961\)

lipphangphangxi nguyen k...
Xem chi tiết
Nguyễn Thúy Quỳnh
10 tháng 3 2016 lúc 14:09

nhân 2 lên rồi ghếp hằng đẳng thức

Hoang Yen Pham
Xem chi tiết
HT2k02
19 tháng 7 2021 lúc 19:21

a) Áp dụng bất đẳng thức Cosi ta có :

\(x^2+1\geq 2x\\ 4y^2+1\geq 4y\\ 9z^2+1\geq 6z\)

Suy ra \(S\leq 6\)

Dấu = xảy ra khi \(x=1;y=\frac{1}{2}; z=\frac{1}{3}\)

 

Trần Đức Tuấn
Xem chi tiết
Trần Thanh Tuấn
Xem chi tiết
Nguyễn Tuấn
1 tháng 3 2016 lúc 19:58

2A= (x2 + y2 + 2xy) + (x2 -10x + 25) + (y2 – 8y + 16) +2002 – (16+25) 
2A= (x + y)2 + (x - 5)2 + (y - 4)2 + 1961. 
Từ biểu thức tổng của các số dương trên ta so sánh từng cặp giá trị (x;y) sao cho các số dương trên nhận giá trị bằng 0 ta có các cặp như sau: (0;0); (0;4); (5;0); (5;4) ta tìm GTNN của A là ½(1961+25+16)

Nguyễn Văn Tiến
Xem chi tiết
Đúng ý bé
Xem chi tiết
hoang
6 tháng 4 2016 lúc 15:22

2(x^2+y^2+xy-5x-4y+2002)=(x+y-2)^2+(x-3)^2+(y-2)^2+3987>=(x+y-2+3-x+2-y)^2/3+3987=3+3987=3990

=>gtnt=1995

Đúng ý bé
Xem chi tiết
Lưu Đức Mạnh
11 tháng 3 2016 lúc 20:11

dù là cách nào đi nữa thì kết quả vẫn như nhau

Lưu Đức Mạnh
11 tháng 3 2016 lúc 21:29

min=1995 khi y=1 x=2

Nguyền Hoàng Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 11 2023 lúc 21:46

Bài 1:

a: \(A=x^2+2x+4\)

\(=x^2+2x+1+3\)

\(=\left(x+1\right)^2+3>=3\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1

Vậy: \(A_{min}=3\) khi x=-1

b: \(B=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1>=1\forall x\)

Dấu '=' xảy ra khi x-10=0

=>x=10

Vậy: \(B_{min}=1\) khi x=10

c: \(C=x^2-2x+y^2+4y+8\)

\(=x^2-2x+1+y^2+4y+4+3\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)

Dấu '=' xảy ra khi x-1=0 và y+2=0

=>x=1 và y=-2

Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)

Bài 2:

a: \(A=5-8x-x^2\)

\(=-\left(x^2+8x\right)+5\)

\(=-\left(x^2+8x+16-16\right)+5\)

\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)

Dấu '=' xảy ra khi x+4=0

=>x=-4

b: \(B=x-x^2\)

\(=-\left(x^2-x\right)\)

\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)

=>\(x=\dfrac{1}{2}\)

c: \(C=4x-x^2+3\)

\(=-x^2+4x-4+7\)

\(=-\left(x^2-4x+4\right)+7\)

\(=-\left(x-2\right)^2+7< =7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

d: \(D=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x^2-6x+9+2\right)\)

\(=-\left(x-3\right)^2-2< =-2\forall x\)

Dấu '=' xảy ra khi x-3=0

=>x=3