A = x2 + y2 + xy - 5x - 4y + 2002
= x2 + x(y - 5) + y2 - 4y + 2002
= x2 + 2.x.(y - 5)/2 + (y - 5)2/4 - (y - 5)2/4 + y2 - 4y + 2002
= [x + (y - 5)/2]2 + 3/4*y2 - 3y/2 + 7983/4
>= 3/4*y2 - 3y/2 + 7983/4 (hàm bậc 2,min tại y = 1)
= 3/4 - 3/2 + 7983/4 = 1995
vậy minA = 1995,dấu = xảy ra khi x + y - 5 = 0 và y = 1
<> x = 4 và y = 1
x2+(y−5)x+y2−4y+2002−A=0
Δ=(y−5)^2−4(y^2−4y+2002−A)
=y^2−10y+25−4y^2+16y−8008+4A
=−3(y−1)^2−7980+4A≥0
→4A−7980≥0
→A≥1995
Dấu bằng khi y=1;x=2