cho tam giác ABC cân tại A. lấy điểm D thuộc cạnh AC, điểm E thuộc cạnh AB sao cho AD=AE
a) so sánh góc ABD và góc ACE
b) gọi I là giao điểm của BD và CE. tam giác IBC là tam giác j? vì sao?
a) Xét 2 tam giác ABD và tam giác ACE có :
AB = AC ( gt)
AD = AE (gt)
A là góc chung
suy ra tam giác ABD = tam giác ACE ( c-g-c)
suy ra góc ABD = góc ACE (2 góc tương ứng )
Vậy góc ABD = góc ACE
b)Ta có: góc B= góc B1 + góc B2
góc C = góc C1 + góc C2
mà góc B1 = góc C1 (vì tam giác ABD = tam giác ACE)
suy ra góc B2 = góc C2
suy ra tam giác IBC là tam giác cân tại I
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc cạnh AB sao cho AD=AE.
a) So sánh góc ABD và góc ACE.
b) Gọi I là giao điểm của BD và CE. Tam giác IBC là tam giác gì ? Vì sao ?
a,Xét \(\Delta ABD\) và \(\Delta ACE\) có
AB=AC(gt)
góc A chung
AD=AE(gt)
=>\(\Delta ABD\)=\(\Delta ACE\)(cgc)
=> góc ABD = góc ACE ( 2 góc tương ứng )
b, Ta có \(\Delta ABC\) cân tại A
=> góc ABC = góc ACB ( 2 góc ở đáy )
Ta lại có góc ABD+góc DBC = góc ABC
góc ACE+góc ECB = góc ACB
=> góc DBC = góc ECB ( vì góc ABD = góc ACE theo câu a)
hay góc IBC = góc ICB ( vì BD cắt CE tại I )
Xét \(\Delta IBC\)có
góc IBC = góc ICB ( cmt )
=> \(\Delta IBC\)cân tại I
Tham khảo
* Tự vẽ hình nha !
a. Xét và ta có:
AB=AC ( cân tại A)
Góc A là góc chung.
AD=AE (gt)
=> (c-g-c)
=> Góc ABD=góc ACE (2 góc tương ứng)
b. Ta có: góc ABD + góc IBC = góc ABC
góc ACE + góc ICB = góc ACB
Mà góc ABC = góc ACB ( cân tại A)
góc ABD = góc ACE (cmt)
=> Góc IBC = góc ICB
=> cân tại I.
a) Xét ΔABD và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
AD=AE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: \(\widehat{ABD}=\widehat{ACE}\)(hai góc tương ứng)
b) Ta có: AE+EB=AB(E nằm giữa A và B)
AD+DC=AC(D nằm giữa A và C)
mà AE=AD(gt)
và AB=AC(ΔABC cân tại A)
nên EB=DC
Xét ΔEBC và ΔDCB có
EB=DC(cmt)
\(\widehat{EBC}=\widehat{DCB}\)(hai góc ở đáy của ΔBAC cân tại A)
BC chung
Do đó: ΔEBC=ΔDCB(c-g-c)
Suy ra: \(\widehat{ECB}=\widehat{DBC}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định nghĩa tam giác cân)
Cho tam giác ABC cân tại A. Lấy điểm D thuộc AC, E thuộc AB sao cho AD=AE
a, So sánh ABD và ACE
b, Gọi I là giao điểm của BD và CE. Tam giác IBC là tam giác gì?
a) Xét tam giác ABD va tam giác ACE
Có: AD=AE (giả thiết)
 là góc chung
AB=AC(vì tam giác ABC cân tại A)
Suy ra:tam giác ABD=tam giác ACE(cạnh- góc-cạnh)
Suy ra:góc ABD=góc ACE(vì hai góc tương ứng)
b)Vì tam giác ABD=tam giác ACE
suy ra: Góc ABD=Góc ACE(2 góc tương ứng)
Ta có:Góc IBC=Góc ABC - Góc ABD
Góc ICB=Góc ACB - Góc ACE
Mà Góc ABC=Góc ACB(vì tam giác ABC cân tại A)
Góc ABD= Góc ACE( chứng minh trên)
Suy ra: Góc IBC=Góc ICB
Vậy tam giac IBC la tam giác cân
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc cạnh AB sao cho AD=AE
a) So sánh ABD và ACE
b) Gọi I là giao điểm của BD và CE. Tam giác IBC là tam giác gì? Vì sao?
Giải:
Do \(\Delta ABC\) cân tại A
\(\Rightarrow AB=AC\circledast\)
Xét \(\Delta ABD,\Delta ACE\) có:
\(AB=AC\) ( theo \(\circledast\) )
\(\widehat{A}\): góc chung
\(AE=AD\left(gt\right)\)
\(\Rightarrow\Delta ABD=\widehat{ACE}\left(c-g-c\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) ( 2 góc tương ứng )
b) Vì \(\Delta ABC\) cân tại A nên \(\widehat{B}=\widehat{C}\)
Mà \(\widehat{B_2}=\widehat{C_2}\) ( do \(\Delta ABD=\Delta ACE\) )
\(\Rightarrow\widehat{B}-\widehat{B_2}=\widehat{C}-\widehat{C_2}\)
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)
\(\Rightarrow\Delta IBC\) cân tại I
Vậy...
Ta có hình vẽ:
a/ Xét tam giác ABD và tam giác ACE có:
-AD = AE (GT)
-góc A: góc chung
-AB = AC (vì ABC là \(\Delta\)cân)
Vậy tam giác ABD = tam giác ACE (c.g.c)
b/ Vì tam giác ABD = tam giác ACE (câu a)
nên góc ABD = góc ACE (2 góc tương ứng) (1)
Mà góc B = góc C (vì \(\Delta\)ABC là \(\Delta\)cân) (2)
Từ (1), (2) => IBC = ICB
=> tam giác IBC là tam giác cân
a. Xét \(\Delta ABD\) và \(\Delta ACE\) ta có:
AB=AC (\(\Delta ABC\) cân tại A)
Góc A là góc chung.
AD=AE (gt)
=> \(\Delta ABD=\Delta ACE\) (c-g-c)
=> Góc ABD=góc ACE (2 góc tương ứng)
b. Ta có: góc ABD + góc IBC = góc ABC
góc ACE + góc ICB = góc ACB
Mà góc ABC = góc ACB (\(\Delta ABC\) cân tại A)
góc ABD = góc ACE (cmt)
=> Góc IBC = góc ICB
=> \(\Delta IBC\) cân tại I.
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc cạnh AB sao cho AD=AE.
a) So sánh ˆ A B D ABD^ và ˆ A C E ACE^.
b ) Gọi I là giao điểm BD và CE. Tam giác IBC là tam giác gì? Vì sao?
XétΔABD và ΔACE có
AB=AC(gt)
góc A chung
AD=AE(gt)
=> ΔABD= ΔACE(cgc)
=> góc ABD = góc ACE ( 2 góc tương ứng )
b, Ta có ΔABC cân tại A
=> góc ABC = góc ACB ( 2 góc ở đáy )
Ta lại có góc ABD+góc DBC = góc ABC góc ACE+góc ECB = góc ACB
=> góc DBC = góc ECB ( vì góc ABD = góc ACE theo câu a) hay góc IBC = góc ICB ( vì BD cắt CE tại I )
Xét ΔIBCcó
góc IBC = góc ICB ( cmt )
=>ΔIBC cân tại I
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc cạnh AB sao cho AD=AE.
a) So sánh abd và . ace
b ) Gọi I là giao điểm BD và CE. Tam giác IBC là tam giác gì? Vì sao?
Giải:
∆ABD và ∆ACE có:
AB=AC(gt)
A góc chung.
AD=AE(gt)
Nên ∆ABD=∆ACE(c.g.c)
Suy ra: ABD=ACE.
Tức là B1 =B2.
b) Ta có B=C mà B1 =C1 suy ra B2 =C2.
Vậy ∆IBC cân tại I.
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc cạnh AB sao cho AD = AE.
a, So sánh góc ABD và góc ACE
b, Gọi I là giao điểm của BD và CE. Tam giác IBC là tam giác gì? Vì sao?
a) Xét tam giác ADB va tam giac AEC ta có
AD=AE
 là góc chung
AB=AC( do ABC cân )
=> tam giác ADB= tam giác AEC (c.g.c)
=>góc AEC=góc ADB
b IBC là tam giác cân vì
ta có
góc IBC =Góc ABC-góc ABD
góc ICB=góc ACB-góc ACE
mà góc ABC=góc ACB(do ABC cân ); góc ABD=Góc ACE (hai góc tương ứng )
=> góc IBC=góc ICB
=> tam giác IBC cân
Cho tam giác ABC cân tại A lấy D thuộc AC , E thuộc AB .a) số sánh góc ABD và góc ACE. B) gọi I là điểm của BD và CE ,tam giác IBC là tam giác gì ? Vì sao?
a: Xét ΔABD và ΔACE có
AB=AC
góc A chung
AD=AE
=>ΔABD=ΔACE
=>góc ABD=góc ACE
b: Xét ΔEBC và ΔDCB có
EB=DC
góc EBC=góc DCB
BC chung
=>ΔEBC=ΔDCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I