Tính giá trị của biểu thuc
(2a-5b)/a-3b với a/b = 3/4
Giải giúp minh nha!
TÍNH GIÁ TRỊ BIỂU THỨC
2A-5B/A-3B VỚI A/B=3/4
TA CÓ\(\frac{2A-5B}{A-3B}=2\frac{A}{B}-5\) / A-3B
=\(2.\left(\frac{3}{4}\right)-5\)/ 3/4-3
=\(\frac{14}{9}\)
tính giá trị biểu thức
2a-5b/a-3b với a/b=3/4
\(\frac{a}{b}=\frac{3}{4}\Rightarrow\frac{a}{3}=\frac{b}{4}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow a=3k;b=4k\) Thay vào \(\frac{2a-5b}{a-3b}\) ta được :
\(\frac{2a-5b}{a-3b}=\frac{2.3k-5.4k}{3k-3.4k}=\frac{6k-20k}{3k-12k}=\frac{k\left(6-20\right)}{k\left(3-12\right)}=\frac{-12}{-9}=\frac{4}{3}\)
2a-5b/a-3b =\(\frac{2\left(\frac{a}{b}\right)-5}{\frac{a}{b}-5}\) =2(3/4)-5/3/4-5
=14/9
Sai rồi Đinh Đức Hùng ạ
6-20=-14 còn 3-12=-9 cơ mà
Sửa lại đi !
Chúc các bạn hok tốt nha
Nhớ k đúng cho mk
Tính giá trị của các biểu thức sau A=\(\dfrac{2a-5b}{a-3b}-\dfrac{4a+b}{8a-2b}\)biết \(\dfrac{a}{b}=\dfrac{3}{4}\)
\(\dfrac{a}{b}=\dfrac{3}{4}\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{2a-5b}{-14}=\dfrac{a-3b}{-9}=\dfrac{4a+b}{16}=\dfrac{8a-2b}{16}\\ \Leftrightarrow A=\dfrac{-14}{-9}-\dfrac{16}{16}=\dfrac{14}{9}-1=\dfrac{5}{9}\)
tính giá trị biểu thức
\(\frac{2a-5b}{a-3b}với\frac{a}{b}=\frac{3}{4}\)
tính giá trị của biểu thức
\(D=\frac{2a-5b}{3-3b}\) với \(\frac{a}{b}=\frac{3}{4}\)
đặt a/3=b/4=k
=>a=3k;b=4k thay vào là lm đk
cho 2 biểu thức A=4√x /√x -5
Và B=√x -2 /√x -1 + 1 /√x -2 +5-2√x /x+√x -2
a)tính A khi x=81
b)rút gọn B
c)tìm các giá trị nguyên của x sao cho A/B <4
giải giúp mình câu c với ạ
a) Thay x = 81 vào A ta có:
\(A=\dfrac{4\sqrt{81}}{\sqrt{81}-5}=\dfrac{4\cdot9}{9-5}=\dfrac{4\cdot9}{4}=9\)
b) \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{x+\sqrt{x}-2}\left(x\ne1;x\ge0\right)\)
\(B-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{x-4+\sqrt{x}-1+5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
c) \(\dfrac{A}{B}< 4\) khi
\(\dfrac{4\sqrt{x}}{\sqrt{x}-5}:\dfrac{\sqrt{x}}{\sqrt{x}+2}< 4\)
\(\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-5}< 4\)
\(\Leftrightarrow\dfrac{4\sqrt{x}+8-4\left(\sqrt{x}-4\right)}{\sqrt{x}-5}< 0\)
\(\Leftrightarrow\dfrac{24}{\sqrt{x}-5}< 0\)
\(\Leftrightarrow\sqrt{x}-5< 0\)
\(\Leftrightarrow x< 25\)
Kết hợp với đk:
\(0\le x< 5\)
tính giá trị biểu thức (2a-b)/(3a-b)+(5b-a)/(3a+b)-3 biết 10a^2-3b^2-5ab=0 và 9a^2-b^2 khác 0
Tính giá trị biểu thức:
\(\frac{2a-5b}{a-3b}\)với \(\frac{a}{b}=\frac{3}{4}\)
Mọi người ơi trả lời giúp mình voi
Phải co lời giải chi tiết
Mình sẽ k cho người trả lời sớm nhất