Bài 1 trên nửa đương tròn tâm O , đường kính AB = 8cm , dựng dây AB = 4cm và tiếp tuyến Ax . Tia BC cắt Ax tại D . Gọi K là trung điểm của AD.
a) tính BC,CD
b) chứng minh KC là tiếp tuyến của đường tròn tâm O
cho nửa đường tròn O đường kính AB trên nửa đường tròn O lấy điểm D( D khác A và B ) kẻ tiếp tuyến Ax cắt BC tại C
a) tính góc ADC
b) gọi i là trung điểm của AC. Chứng minh ID là tiếp tuyến của nửa đường tròn
c) từ D, kẻ DH vuông góc AB tia BC cắt DH tại K.Chứng minh K đà trung điểm của DH.
a: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
hay \(\widehat{ADC}=180^0-90^0=90^0\)
b: Ta có: ΔADC vuông tại D
mà DI là đường trung tuyến ứng với cạnh huyền AC
nên DI=IC=IA=AC/2
Xét ΔODI và ΔOAI có
OD=OA
DI=AI
OI chung
Do đó: ΔODI=ΔOAI
Suy ra: \(\widehat{ODI}=\widehat{OAI}=90^0\)
hay ID là tiếp tuyến của (O)
Cho nửa đường tròn tâm O, đường kính AB = 2R. Vẽ tiếp tuyến Ax với nửa đường tròn (O). Gọi C điểm trên cung AB, D là điểm chính giữa cung AC, E là giao điểm của BD và Ax. Hai tia AD và BC cắt nhau tại K.
a) Chứng minh rằng BD.BE = 4R2.
b) Chứng minh tam giác BAK cân và AEKB là tứ giác nội tiếp.
c) Gọi I là giao điểm của AC và BD và P là giao điểm của KI và AB.
Chứng minh ip/ik = bp/ba.
d) Trong trường hợp EC//AB. Hãy tính BC theo R
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bò là AB). Trên đoạn AB lấy điểm M (M khác A, M khác B), đường thẳng vuông góc với AB tại M cắt nửa đường tròn tâm O tại C, tia BC cắt Ax tại D. Gọi N là trung điểm của AD. Gọi H là giao điểm của ON và AC. Kẻ HE vuông góc với AN (E thuộc AN). Đường tròn đường kính NC cắt EC tại F. Chứng minh NF luôn đi qua 1 điểm cố định khi M di chuyển trên AB.
Gọi C là điểm nằm trên nửa đường tròn tâm O, đường kính AB (C khác A, B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, dựng tiếp tuyến Ax với nữa đường tròn. Tia BC cắt Ax tại I; tia phân giác góc IAC cắt nửa đường tròn tại E và cắt BC tại F; tia BE cắt AC tại K.
a) Chứng minh E, F, C, K cùng nằm trên một đường tròn
b) Chứng minh tam giác ABF cân.
c) Gọi G là trung điểm IA. Chứng minh GC là tiếp tuyến của nửa đường tròn O.
Em cần câu b, c ạ.
\(\widehat{IAF}=\widehat{CAF}\)
\(\widehat{CFA}+\widehat{CAF}=90^0\)
\(\widehat{BAF}+\widehat{IAF}=90^0\)
\(\Rightarrow\widehat{CFA}=\widehat{BAF}\)
c.
O là trung điểm AB, G là trung điểm AI \(\Leftrightarrow\) OG là đường trung bình ABI
\(\Rightarrow OG//BI\Rightarrow OG\perp AC\)
Mà \(OA=OC\Rightarrow OG\) là trung trực AC
\(\Rightarrow AG=CG\Rightarrow CG\) là tiếp tuyến
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bờ là AB). Trên AB lấy M (M khác A, M khác B), đường thẳng vuông góc với AB tại M cắt nửa đường tròn tâm O tại C, tia BC cắt Ax tại D. N là trung điểm AD.
a) Chứng minh NC là tiếp tuyến của nửa đường tròn tâm O.
b) Gọi H là giao điểm của ON và AC. Kẻ HE vuông góc với AN \(\left(E\in AN\right).\) Đường tròn đường kính NC cắt EC tại F. Chứng minh tia NF luôn đi qua một điểm cố định khi M di chuyển trên đoạn AB.
p/s: giải giúp mk câu b nhoa!!!
(Quá lực!!!)
Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.
Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).
Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.
Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).
-----
Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).
Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)
cho nửa đường tròn (O) đường kính AB, kẻ tiếp tuyến Ax. Qua C nằm trên nửa đường tròn kẻ tiếp tuyến với nửa đường tròn cắt Ax tại M, tiai BC cắt Ax tại M, tia BC cắt Ax tại N
a) Chứng minh OM vuông góc với AC
b) Chứng minh M là trung điểm của AN
c) Kẻ CH vuông góc AB,BM cắt CH ở K. Chứng minh K là trung điểm của CH
a/ Xét tam giác MAO và tam giác MCO có
MA = MC
MO chung
AO = AC
=> tam giác MAO = tam giác MCO
\(\Rightarrow\widehat{AOM}=\widehat{COM}\)
\(\Rightarrow OM\) là phân giác \(\widehat{AOC}\) mà tam giác AOC cân tạo O
\(\Rightarrow OM\) là đường cao của tam giác AOC
\(\Rightarrow\)OM vuông góc với AC
b/ Từ câu a ta suy ra được OM vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow\)OM vuông góc AC
Mà NC vuông góc AC
=> OM // NC (1)
ta lại có AI = IC (2)
Từ (1) và (2) => OM là đường trung bình của tam giác ONC
=> M là trung điểm của AN
c/ Ta thấy rằng CH // AN (vì cùng vuông góc AB)
\(\Rightarrow\frac{CK}{MN}=\frac{BK}{BM}=\frac{KH}{AM}\)
Mà MN = AM nên => CK = KH
Vậy K là trung điểm của CH
Cho nửa đường tròn (O) đường kính AB. Trên cùng nửa mặt phẳng bờ chứa AB kẻ tiếp tuyến Ax và By với nử đường tròn tâm O. Qua C bất kì trên nửa đường tâm O (C khác A và B) kẻ tiếp tuyến đối với nửa đường tròn tâm O, tiếp tuyến này cắt Ax, By lần lượt ở M và N.
Gọi K là giao điểm của AN và BM, CK cắt AB tại H. Chứng minh K là trung điểm của CH