Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ha ha
Xem chi tiết
Tấn Hưng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2022 lúc 9:31

a: Xét (O) có 

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

hay \(\widehat{ADC}=180^0-90^0=90^0\)

b: Ta có: ΔADC vuông tại D

mà DI là đường trung tuyến ứng với cạnh huyền AC

nên DI=IC=IA=AC/2

Xét ΔODI và ΔOAI có

OD=OA

DI=AI

OI chung

Do đó: ΔODI=ΔOAI

Suy ra: \(\widehat{ODI}=\widehat{OAI}=90^0\)

hay ID là tiếp tuyến của (O)

Trần Duy Anh
Xem chi tiết
Etermintrude💫
24 tháng 5 2021 lúc 21:39

undefined

phạm hoàng
Xem chi tiết
Heri Mỹ Anh
Xem chi tiết
tthnew
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 12 2020 lúc 16:09

\(\widehat{IAF}=\widehat{CAF}\)

\(\widehat{CFA}+\widehat{CAF}=90^0\)

\(\widehat{BAF}+\widehat{IAF}=90^0\)

\(\Rightarrow\widehat{CFA}=\widehat{BAF}\)

c.

O là trung điểm AB, G là trung điểm AI \(\Leftrightarrow\) OG là đường trung bình ABI

\(\Rightarrow OG//BI\Rightarrow OG\perp AC\)

Mà \(OA=OC\Rightarrow OG\) là trung trực AC

\(\Rightarrow AG=CG\Rightarrow CG\) là tiếp tuyến

Thiên An
Xem chi tiết
Trần Quốc Đạt
13 tháng 1 2017 lúc 21:21

(Quá lực!!!)

E N A B C D O H L

Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.

Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).

Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.

Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).

-----

Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).

Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)

Trần Hoàng Thiên Bảo
Xem chi tiết
alibaba nguyễn
28 tháng 11 2016 lúc 9:11

O A B C N M H K I

a/ Xét tam giác MAO và tam giác MCO có

MA = MC

MO chung

AO = AC

=> tam giác MAO = tam giác MCO

\(\Rightarrow\widehat{AOM}=\widehat{COM}\)

\(\Rightarrow OM\) là phân giác \(\widehat{AOC}\) mà tam giác AOC cân tạo O

\(\Rightarrow OM\) là đường cao của tam giác AOC

\(\Rightarrow\)OM vuông góc với AC

b/ Từ câu a ta suy ra được OM vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow\)OM vuông góc AC

Mà NC vuông góc AC

=> OM // NC (1)

ta lại có AI = IC (2)

Từ (1) và (2) => OM là đường trung bình của tam giác ONC

=> M là trung điểm của AN

c/ Ta thấy rằng CH // AN (vì cùng vuông góc AB)

\(\Rightarrow\frac{CK}{MN}=\frac{BK}{BM}=\frac{KH}{AM}\)

Mà MN = AM nên => CK = KH

Vậy K là trung điểm của CH

Linh Nguyễn
Xem chi tiết