Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Toàn
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2022 lúc 21:47

1: \(BC=\sqrt{12^2+9^2}=15\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{144}{15}=9,6\left(cm\right)\)

CH=5,4(cm)

2: \(BC=\sqrt{2+2}=2\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=1\left(cm\right)\)

\(BH=CH=AH=1\left(cm\right)\)

Mai Thành Đạt
Xem chi tiết
Big City Boy
Xem chi tiết
Trần Minh Hoàng
12 tháng 3 2021 lúc 17:03

Qua D kẻ đường thẳng song song với AB cắt AC tại E.

Dễ thấy tam giác AED vuông cân tại E nên \(\dfrac{AD}{\sqrt{2}}=AE=ED\).

Theo định lý Thales ta có: \(\dfrac{DE}{AB}=\dfrac{CE}{CA}=1-\dfrac{AE}{CA}=1-\dfrac{DE}{CA}\Rightarrow\dfrac{1}{DE}=\dfrac{1}{AB}+\dfrac{1}{AC}\Rightarrow\dfrac{\sqrt{2}}{AD}=\dfrac{1}{AB}+\dfrac{1}{AC}\).

Vậy ta có đpcm.

Big City Boy
Xem chi tiết
Trần Minh Hoàng
12 tháng 3 2021 lúc 21:55

Bài này mình làm rồi mà bạn

Nguyễn Đức An
Xem chi tiết
Nguyễn Huy Tú
30 tháng 7 2021 lúc 19:51

A B C D E F

Vì DE // AC Theo hệ quảTa lét ta có : \(\frac{DB}{AB}=\frac{DE}{AC}\Rightarrow\frac{AB-AD}{AB}=\frac{DE}{AC}\)

\(\Rightarrow\frac{AB-2}{AB}=\frac{2}{AC}\Rightarrow AB.AC-2AC=2AB\)

\(\Rightarrow AB.AC-2\left(AC+AB\right)=0\)(*)

Theo định lí Pytago tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2\)(**) 

Từ (*) ; (**) ta có hệ : \(\hept{\begin{cases}AB.AC-2\left(AC+AB\right)=0\\AB^2+AC^2=45\end{cases}}\)

bấm casio nhé, mode 9 _ 1 _ ấn hệ ra _ ''=''

Khách vãng lai đã xóa
Nguyễn Khánh Ngân
Xem chi tiết
Phương Uyên
16 tháng 3 2022 lúc 19:07

ko btttttttttttttttttttttttttttttt

Khách vãng lai đã xóa
TIAe
Xem chi tiết
Hà vy
Xem chi tiết
lekhoi
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 13:34

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=15^2-9^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)

hay AH=7,2(cm)

lekhoi
Xem chi tiết