11 x (y+3) = 5 x y +105
11 x (y-6) = (4xy)+11
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
1.Tìm các số nguyên x,y bt:
a, (x+1)×(y+3)=5
b, x^2 + 4xy=11
c, x^2 + xy + y =22
Mk đang cần gấp giúp mk vs nhé !!!!!
a, (x+1)×(y+3)=5
=> x+1 và y+3 \(\in\) Ư(5) = {-1;-5;1;5}
ta có bảng sau :
x+1 | -1 | -5 | 1 | 5 |
y+3 | -5 | -1 | 5 | 1 |
x | -2 | -6 | 0 | 4 |
y | -8 | -4 | 2 | -2 |
vậy các cặp số (x;y) thỏa mãn là : (-2; -8); (-6; -4); (0; 2); (4; -2)
b, ko bt làm!
c, x2 + xy + y = 22
=> x.x + xy + y = 22
=> x(x+y) + x + y = 22 + y
=> x(x+y) + 1(x+y) = 22 + y
bí ròi
1.Tìm các số nguyên x,y bt:
a, (x+1)×(y+3)=5
b, x^2 + 4xy=11
c, x^2 + xy + y =22
a,\(\left(x+1\right)\left(y+3\right)=5\)
Ta có:5=5.1=1.5
\(\Leftrightarrow\left[{}\begin{matrix}x+1=5\\x+1=1\\y+3=5\\y+3=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\\y=2\\y=-2\end{matrix}\right.\)
Vậy...
Tìm GTNN của các biểu thức sau :
A=x^2-5x+11 E=2x^2-4xy+4y^2+2x+
B=(x-3)^2+(x-11)^2 F=4x^2+7x+13
C=x^2-2x+y^2-4y+6
D=3x^2+y^2-2xy-7
a) Ta có: \(A=x^2-5x+11\)
\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{19}{4}\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\)
Ta có: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\frac{5}{2}=0\)
hay \(x=\frac{5}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-5x+11\) là \(\frac{19}{4}\) khi \(x=\frac{5}{2}\)
b) Ta có: \(B=\left(x-3\right)^2+\left(x-11\right)^2\)
\(=x^2-6x+9+x^2-22x+121\)
\(=2x^2-28x+130\)
\(=2\left(x^2-14x+65\right)\)
\(=2\left(x^2-14x+49+16\right)\)
\(=2\left(x-7\right)^2+32\)
Ta có: \(\left(x-7\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-7\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-7\right)^2+32\ge32\forall x\)
Dấu '=' xảy ra khi x-7=0
hay x=7
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x-3\right)^2+\left(x-11\right)^2\) là 32 khi x=7
x/5 = y/3 ; y/6 = z/11 và x + y - z = 80
Có `x/5=y/3;y/6=z/11`
`=>x/10=y/6;y/6=z/11`
`=>x/10=y/6=z/11`
Áp sụng t/c của `DTSBN , ta đc:
`x/10=y/6=z/11=(x+y-z)/(10+6-11)=80/5=16`
`=>x=160;y=96;z=176`
Có :
\(\dfrac{x}{5}=\dfrac{y}{3}\\\Leftrightarrow \dfrac{x}{10}=\dfrac{y}{6}\\ \dfrac{y}{6}=\dfrac{z}{11}\\ \Rightarrow\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{11}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
x/10 = y/6 = z/11 = \(\dfrac{x+y-z}{10+6-11}=\dfrac{80}{5}=16\)
=> x = 10 x 16 =160
y = 6 x 16 =96
z = 11 x 16 =176
tìm giá trị nhỏ nhất của biểu thức
a, A=x^2-6x+11
b, B=x^2-20x+101
c, C= x^2-6x+11
d, D= (x-1)(x+2)(x+3)(x+6)
e,E= x^2-2x+y^2+4y+8
f, x^2-4x+y^2-8y+6
g, G=x^2-4xy+5y^2+10x-22y+28
a/ Ta có:
\(A=x^2-6x+11\)
\(A=x\cdot x-3x-3x+3\cdot3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\ge0\)
Nên GTNN của \(\left(x-3\right)^2\)là 0
=> \(A_{min}=0+2=2\)
mình chỉ biết a. thôi
a) ta có : \(A=x^2-6x+11\)
\(A=x.x-3x-3x+3.3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
vì \(\left(x-3\right)^2\ge0\)
nên GTNN của \(\left(x-3\right)^2\)là \(0\)
\(\Rightarrow\)\(A_{min}\)\(=0+2=2\)
oOo Không đủ can đảm để oOo copy mà nói nhưu mk tự làm
4xy+y+4x=11
tim x y
1. so sánh các tích sau bằng cách hợp lý nhất :
P1 = ( -57/95 ) . ( -29/60 )
P2 = ( -5/11 ) . ( -49/73 ) . ( -6/23 )
P3 = -4/11 . -3/11 . -2/11 ........ 3/11 . 4/11
2. tìm các số nguyên x, y bt rằng :
x/4 - 1/y = 1/2
3. tìm 2 số hữu tỉ x và y sao cho x - y = x . y = x : y ( y \(\ne\)0 )
4. tìm các số hữu tỉ x, y, z bt rằng :
x . ( x + y + z ) = -5
y . ( x + y + z ) = 9
z . ( x + y + z ) = 5
Tìm z,x,y biết rằng : x/3 = y/4 ; y/5= z/6 và y+z+x = 11
x/15 = y/20 = z/24 = 11/59
x = 11.15/59
y = 11.20/59
z = 11.24/59
( cái tui thích nhất môn toán là học phải suy nghĩ)
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{6}\)và\(y+z+x=11\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)
Áp dụng t/c của dãy tỉ số = nhau, ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=\frac{x+y+z}{15+20+24}=\frac{11}{59}\)
\(suy\)\(ra\)\(\frac{x}{15}=\frac{11}{59}\Rightarrow x=\frac{11.15}{59}=\frac{165}{59}\)
\(\frac{y}{20}=\frac{11}{59}\Rightarrow y=\frac{11.20}{59}=\frac{220}{59}\)
\(\frac{z}{24}=\frac{11}{59}\Rightarrow z=\frac{24.11}{59}=\frac{264}{59}\)